Cargando…
Machine learned features from density of states for accurate adsorption energy prediction
Materials databases generated by high-throughput computational screening, typically using density functional theory (DFT), have become valuable resources for discovering new heterogeneous catalysts, though the computational cost associated with generating them presents a crucial roadblock. Hence the...
Autores principales: | Fung, Victor, Hu, Guoxiang, Ganesh, P., Sumpter, Bobby G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782579/ https://www.ncbi.nlm.nih.gov/pubmed/33398014 http://dx.doi.org/10.1038/s41467-020-20342-6 |
Ejemplares similares
-
Accurate Machine Learning Prediction of Protein Circular
Dichroism Spectra with Embedded Density Descriptors
por: Zhao, Luyuan, et al.
Publicado: (2021) -
Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies
por: Jorner, Kjell, et al.
Publicado: (2020) -
Machine learning accurate exchange and correlation functionals of the electronic density
por: Dick, Sebastian, et al.
Publicado: (2020) -
Machine Learning to Predict the Adsorption Capacity of Microplastics
por: Astray, Gonzalo, et al.
Publicado: (2023) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017)