Cargando…

Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer

BACKGROUND: Progesterone receptors (PR) are potent modifiers of endocrine responses. In aberrant signalling cancer contexts, phosphorylation events dramatically alter steroid hormone receptor action. METHODS: The transcriptomes of primary tumours and metastases in mice harbouring ER+ breast cancer p...

Descripción completa

Detalles Bibliográficos
Autores principales: Dwyer, Amy R., Truong, Thu H., Kerkvliet, Carlos Perez, Paul, Kiran V., Kabos, Peter, Sartorius, Carol A., Lange, Carol A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782753/
https://www.ncbi.nlm.nih.gov/pubmed/33144693
http://dx.doi.org/10.1038/s41416-020-01094-y
Descripción
Sumario:BACKGROUND: Progesterone receptors (PR) are potent modifiers of endocrine responses. In aberrant signalling cancer contexts, phosphorylation events dramatically alter steroid hormone receptor action. METHODS: The transcriptomes of primary tumours and metastases in mice harbouring ER+ breast cancer patient-derived xenografts (PDXs) were analysed following single-cell RNAseq. In vitro assays were employed to delineate mechanisms of endocrine resistance and stemness. RESULTS: A 16-gene phospho-Ser294 PR (p-PR) signature predicted poor outcome in ER+ breast cancer. Relative to primary PDX tumours, metastatic lesions expressed abundant p-PR and exhibited an activated PR gene programme with elevated expression of PGR and IRS-1. Breast cancer models of activated PR lost the expression of IGF1R and acquired insulin hypersensitivity with tamoxifen insensitivity. Activated p-PR+ breast cancer cells formed increased tumourspheres with enlarged ALDH+ and CD24−/CD44 populations. E2 induced PR/IRS-1 interaction and exchange of IGF1Rβ for IRS-1 in p-PR-containing transcriptional complexes. Inhibition of IRS-1 or IR and inducible IRS-1 knockdown reduced tumourspheres. Endocrine-resistant models of luminal B breast cancer induced p-PR in 3D cultures and required PR and IRS-1 for tumoursphere formation. CONCLUSIONS: Phospho-PR-B cooperates with IRS-1 to promote outgrowth of endocrine-resistant and stem-like breast cancer cells. Targeting phospho-PR/IRS-1 crosstalk may block the emergence of endocrine resistance. [Image: see text]