Cargando…

Interaction between Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1 and GTP-H-Ras: Implications for Aggressiveness of Human Mammary Epithelial Cells and Drug Resistance

Aberrant activation of Ras has been implicated in aggressiveness of breast cancer. Among Ras isoforms (H-, K-, and N-), H-Ras has been known to be primarily responsible for invasion and metastasis of breast cancer cells. Phosphorylation of serine (Ser) or threonine (Thr) is a key regulatory mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Saeidi, Soma, Joo, Sihyung, Kim, Su-Jung, Jagadeesh, Achanta Sri Venkata, Surh, Young-Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Cancer Prevention 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783236/
https://www.ncbi.nlm.nih.gov/pubmed/33409256
http://dx.doi.org/10.15430/JCP.2020.25.4.234
Descripción
Sumario:Aberrant activation of Ras has been implicated in aggressiveness of breast cancer. Among Ras isoforms (H-, K-, and N-), H-Ras has been known to be primarily responsible for invasion and metastasis of breast cancer cells. Phosphorylation of serine (Ser) or threonine (Thr) is a key regulatory mechanism responsible for controlling activities and functions of various proteins involved in intracellular signal transduction. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, Pin1 changes the conformation of a subset of proteins phosphorylated on Ser/Thr that precedes proline (Pro). In this study we have found that Pin1 is highly overexpressed in human breast tumor tissues and H-Ras transformed human mammary epithelial (H-Ras MCF10A) and MDA-MB-231 breast cancer cells. Notably, Pin1 directly bound to the activated form of H-Ras harbouring a Ser/Thr-Pro motif. Pharmacologic inhibition of Pin1 reduced clonogenicity of MDA-MB-231 human breast cancer cells. Paclitaxel accelerates apoptosis in Pin1 silenced H-Ras MCF10A cells. MDR genes (MDR1 and MRP4) were significantly downregulated in MDA-MB-231 cells stably silenced for Pin1. We speculate that Pin1 interacts with GTP-H-Ras, thereby upregulating the expression of drug resistance genes, which confers survival advantage and aggressiveness of breast cancer cells under chemotherapy.