Cargando…
Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest
BACKGROUND: The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor subtype 2 (VEGFR-2) pathway has been implicated in ischemia/reperfusion injury. The aim of this study was to clarify whether whole-body hypothermic targeted temperature management (HTTM) inhi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785329/ https://www.ncbi.nlm.nih.gov/pubmed/33403582 http://dx.doi.org/10.1007/s12028-020-01166-0 |
_version_ | 1783632419220357120 |
---|---|
author | Li, Jiebin Li, Chunsheng Yuan, Wei Wu, Junyuan Li, Jie Li, Zhenhua Zhao, Yongzhen |
author_facet | Li, Jiebin Li, Chunsheng Yuan, Wei Wu, Junyuan Li, Jie Li, Zhenhua Zhao, Yongzhen |
author_sort | Li, Jiebin |
collection | PubMed |
description | BACKGROUND: The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor subtype 2 (VEGFR-2) pathway has been implicated in ischemia/reperfusion injury. The aim of this study was to clarify whether whole-body hypothermic targeted temperature management (HTTM) inhibits the HIF-1α/VEGF/VEGFR-2 pathway in a swine model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). METHODS: Twenty-four domestic male Beijing Landrace pigs were used in this study. CA was electrically induced with ventricular fibrillation and left untreated for 8 min. Return of spontaneous circulation (ROSC) was achieved in 16 pigs, which were randomly assigned either to normothermia at 38 °C or to HTTM at 33 °C (each group: n = 8). HTTM was intravascularly induced immediately after ROSC. The core temperature was reduced to 33 °C and maintained for 12 h after ROSC. The serum levels of HIF-1α, VEGF, VEGFR-2, and neuron-specific enolase (NSE) were measured with enzyme immunoassay kits 0.5, 6, 12, and 24 h after ROSC. The expression of HIF-1α, VEGF, and VEGFR-2 in cerebral cortical tissue was measured by RT-PCR and Western blot analysis 24 h after ROSC. Neurological deficit scores and brain cortical tissue water content were evaluated 24 h after ROSC. RESULTS: The serum levels of HIF-1α, VEGF, and VEGFR-2 were significantly increased under normothermia within 24 h after ROSC. However, these increases were significantly reduced by HTTM. HTTM also decreased cerebral cortical HIF-1α, VEGF, and VEGFR-2 mRNA and protein expression 24 h after ROSC (all p < 0.05). HTTM pigs had better neurological outcomes and less brain edema than normothermic pigs. CONCLUSION: The HIF-1α/VEGF/VEGFR-2 system is activated following CA and CPR. HTTM protects against cerebral injury after ROSC, which may be part of the mechanism by which it inhibits the expression of components of the HIF-1α/VEGF/VEGFR-2 signaling pathway. |
format | Online Article Text |
id | pubmed-7785329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-77853292021-01-06 Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest Li, Jiebin Li, Chunsheng Yuan, Wei Wu, Junyuan Li, Jie Li, Zhenhua Zhao, Yongzhen Neurocrit Care Original Work BACKGROUND: The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor subtype 2 (VEGFR-2) pathway has been implicated in ischemia/reperfusion injury. The aim of this study was to clarify whether whole-body hypothermic targeted temperature management (HTTM) inhibits the HIF-1α/VEGF/VEGFR-2 pathway in a swine model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). METHODS: Twenty-four domestic male Beijing Landrace pigs were used in this study. CA was electrically induced with ventricular fibrillation and left untreated for 8 min. Return of spontaneous circulation (ROSC) was achieved in 16 pigs, which were randomly assigned either to normothermia at 38 °C or to HTTM at 33 °C (each group: n = 8). HTTM was intravascularly induced immediately after ROSC. The core temperature was reduced to 33 °C and maintained for 12 h after ROSC. The serum levels of HIF-1α, VEGF, VEGFR-2, and neuron-specific enolase (NSE) were measured with enzyme immunoassay kits 0.5, 6, 12, and 24 h after ROSC. The expression of HIF-1α, VEGF, and VEGFR-2 in cerebral cortical tissue was measured by RT-PCR and Western blot analysis 24 h after ROSC. Neurological deficit scores and brain cortical tissue water content were evaluated 24 h after ROSC. RESULTS: The serum levels of HIF-1α, VEGF, and VEGFR-2 were significantly increased under normothermia within 24 h after ROSC. However, these increases were significantly reduced by HTTM. HTTM also decreased cerebral cortical HIF-1α, VEGF, and VEGFR-2 mRNA and protein expression 24 h after ROSC (all p < 0.05). HTTM pigs had better neurological outcomes and less brain edema than normothermic pigs. CONCLUSION: The HIF-1α/VEGF/VEGFR-2 system is activated following CA and CPR. HTTM protects against cerebral injury after ROSC, which may be part of the mechanism by which it inhibits the expression of components of the HIF-1α/VEGF/VEGFR-2 signaling pathway. Springer US 2021-01-05 2021 /pmc/articles/PMC7785329/ /pubmed/33403582 http://dx.doi.org/10.1007/s12028-020-01166-0 Text en © Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Work Li, Jiebin Li, Chunsheng Yuan, Wei Wu, Junyuan Li, Jie Li, Zhenhua Zhao, Yongzhen Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest |
title | Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest |
title_full | Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest |
title_fullStr | Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest |
title_full_unstemmed | Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest |
title_short | Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest |
title_sort | targeted temperature management suppresses hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a pig model of cardiac arrest |
topic | Original Work |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785329/ https://www.ncbi.nlm.nih.gov/pubmed/33403582 http://dx.doi.org/10.1007/s12028-020-01166-0 |
work_keys_str_mv | AT lijiebin targetedtemperaturemanagementsuppresseshypoxiainduciblefactor1aandvascularendothelialgrowthfactorexpressioninapigmodelofcardiacarrest AT lichunsheng targetedtemperaturemanagementsuppresseshypoxiainduciblefactor1aandvascularendothelialgrowthfactorexpressioninapigmodelofcardiacarrest AT yuanwei targetedtemperaturemanagementsuppresseshypoxiainduciblefactor1aandvascularendothelialgrowthfactorexpressioninapigmodelofcardiacarrest AT wujunyuan targetedtemperaturemanagementsuppresseshypoxiainduciblefactor1aandvascularendothelialgrowthfactorexpressioninapigmodelofcardiacarrest AT lijie targetedtemperaturemanagementsuppresseshypoxiainduciblefactor1aandvascularendothelialgrowthfactorexpressioninapigmodelofcardiacarrest AT lizhenhua targetedtemperaturemanagementsuppresseshypoxiainduciblefactor1aandvascularendothelialgrowthfactorexpressioninapigmodelofcardiacarrest AT zhaoyongzhen targetedtemperaturemanagementsuppresseshypoxiainduciblefactor1aandvascularendothelialgrowthfactorexpressioninapigmodelofcardiacarrest |