Cargando…
MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species
Adjuvant chemotherapy for solid tumors based on platinum-derived compounds such as cisplatin is the treatment of choice in most cases. Cisplatin triggers signaling pathways that lead to cell death, but it also induces changes in tumor cells that modify the therapeutic response, thereby leading to ci...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787305/ https://www.ncbi.nlm.nih.gov/pubmed/30053382 http://dx.doi.org/10.1016/j.trsl.2018.06.005 |
_version_ | 1783632798346641408 |
---|---|
author | VERA-PUENTE, OLGA RODRIGUEZ-ANTOLIN, CARLOS SALGADO-FIGUEROA, ANA MICHALSKA, PATRYCJA PERNIA, OLGA REID, BRETT M. ROSAS, ROCÍO GARCIA-GUEDE, ALVARO SACRISTÁN, SILVIA JIMENEZ, JULIA ESTEBAN-RODRIGUEZ, ISABEL MARTIN, M. ELENA SELLERS, THOMAS A. LEÓN, RAFAEL GONZALEZ, VÍCTOR M. DE CASTRO, JAVIER DE CACERES, INMACULADA IBANEZ |
author_facet | VERA-PUENTE, OLGA RODRIGUEZ-ANTOLIN, CARLOS SALGADO-FIGUEROA, ANA MICHALSKA, PATRYCJA PERNIA, OLGA REID, BRETT M. ROSAS, ROCÍO GARCIA-GUEDE, ALVARO SACRISTÁN, SILVIA JIMENEZ, JULIA ESTEBAN-RODRIGUEZ, ISABEL MARTIN, M. ELENA SELLERS, THOMAS A. LEÓN, RAFAEL GONZALEZ, VÍCTOR M. DE CASTRO, JAVIER DE CACERES, INMACULADA IBANEZ |
author_sort | VERA-PUENTE, OLGA |
collection | PubMed |
description | Adjuvant chemotherapy for solid tumors based on platinum-derived compounds such as cisplatin is the treatment of choice in most cases. Cisplatin triggers signaling pathways that lead to cell death, but it also induces changes in tumor cells that modify the therapeutic response, thereby leading to cisplatin resistance. We have recently reported that microRNA-7 is silenced by DNA methylation and is involved in the resistance to platinum in cancer cells through the action of the musculoaponeurotic fibrosarcoma oncogene family, protein G (MAFG). In the present study, we first confirm the miR-7 epigenetic regulation of MAFG in 44 normal- and/or tumor-paired samples in non small-cell lung cancer (NSCLC). We also provide translational evidence of the role of MAFG and the clinical outcome in NSCLC by the interrogation of two extensive in silico databases of 2019 patients. Moreover, we propose that MAFG-mediated resistance could be conferred due to lower reactive oxygen species production after cisplatin exposure. We developed specifically selected aptamers against MAFG, with high sensitivity to detect the protein at a nuclear level probed by aptacytochemistry and histochemistry analyses. The inhibition of MAFG activity through the action of the specific aptamer apMAFG6F increased the levels of reactive oxygen species production and the sensitivity to cisplatin. We report first the specific nuclear identification of MAFG as a novel detection method for diagnosis in NSCLC, and then we report that MAFG modulates the redox response and confers cell protection against free radicals generated after platinum administration, thus also being a promising therapeutic target. |
format | Online Article Text |
id | pubmed-7787305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-77873052021-01-06 MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species VERA-PUENTE, OLGA RODRIGUEZ-ANTOLIN, CARLOS SALGADO-FIGUEROA, ANA MICHALSKA, PATRYCJA PERNIA, OLGA REID, BRETT M. ROSAS, ROCÍO GARCIA-GUEDE, ALVARO SACRISTÁN, SILVIA JIMENEZ, JULIA ESTEBAN-RODRIGUEZ, ISABEL MARTIN, M. ELENA SELLERS, THOMAS A. LEÓN, RAFAEL GONZALEZ, VÍCTOR M. DE CASTRO, JAVIER DE CACERES, INMACULADA IBANEZ Transl Res Article Adjuvant chemotherapy for solid tumors based on platinum-derived compounds such as cisplatin is the treatment of choice in most cases. Cisplatin triggers signaling pathways that lead to cell death, but it also induces changes in tumor cells that modify the therapeutic response, thereby leading to cisplatin resistance. We have recently reported that microRNA-7 is silenced by DNA methylation and is involved in the resistance to platinum in cancer cells through the action of the musculoaponeurotic fibrosarcoma oncogene family, protein G (MAFG). In the present study, we first confirm the miR-7 epigenetic regulation of MAFG in 44 normal- and/or tumor-paired samples in non small-cell lung cancer (NSCLC). We also provide translational evidence of the role of MAFG and the clinical outcome in NSCLC by the interrogation of two extensive in silico databases of 2019 patients. Moreover, we propose that MAFG-mediated resistance could be conferred due to lower reactive oxygen species production after cisplatin exposure. We developed specifically selected aptamers against MAFG, with high sensitivity to detect the protein at a nuclear level probed by aptacytochemistry and histochemistry analyses. The inhibition of MAFG activity through the action of the specific aptamer apMAFG6F increased the levels of reactive oxygen species production and the sensitivity to cisplatin. We report first the specific nuclear identification of MAFG as a novel detection method for diagnosis in NSCLC, and then we report that MAFG modulates the redox response and confers cell protection against free radicals generated after platinum administration, thus also being a promising therapeutic target. 2018-06-30 2018-10 /pmc/articles/PMC7787305/ /pubmed/30053382 http://dx.doi.org/10.1016/j.trsl.2018.06.005 Text en This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Article VERA-PUENTE, OLGA RODRIGUEZ-ANTOLIN, CARLOS SALGADO-FIGUEROA, ANA MICHALSKA, PATRYCJA PERNIA, OLGA REID, BRETT M. ROSAS, ROCÍO GARCIA-GUEDE, ALVARO SACRISTÁN, SILVIA JIMENEZ, JULIA ESTEBAN-RODRIGUEZ, ISABEL MARTIN, M. ELENA SELLERS, THOMAS A. LEÓN, RAFAEL GONZALEZ, VÍCTOR M. DE CASTRO, JAVIER DE CACERES, INMACULADA IBANEZ MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species |
title | MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species |
title_full | MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species |
title_fullStr | MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species |
title_full_unstemmed | MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species |
title_short | MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species |
title_sort | mafg is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787305/ https://www.ncbi.nlm.nih.gov/pubmed/30053382 http://dx.doi.org/10.1016/j.trsl.2018.06.005 |
work_keys_str_mv | AT verapuenteolga mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT rodriguezantolincarlos mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT salgadofigueroaana mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT michalskapatrycja mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT perniaolga mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT reidbrettm mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT rosasrocio mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT garciaguedealvaro mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT sacristansilvia mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT jimenezjulia mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT estebanrodriguezisabel mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT martinmelena mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT sellersthomasa mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT leonrafael mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT gonzalezvictorm mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT decastrojavier mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies AT decaceresinmaculadaibanez mafgisapotentialtherapeutictargettorestorechemosensitivityincisplatinresistantcancercellsbyincreasingreactiveoxygenspecies |