Cargando…
An interpretable bimodal neural network characterizes the sequence and preexisting chromatin predictors of induced transcription factor binding
BACKGROUND: Transcription factor (TF) binding specificity is determined via a complex interplay between the transcription factor’s DNA binding preference and cell type-specific chromatin environments. The chromatin features that correlate with transcription factor binding in a given cell type have b...
Autores principales: | Srivastava, Divyanshi, Aydin, Begüm, Mazzoni, Esteban O., Mahony, Shaun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788824/ https://www.ncbi.nlm.nih.gov/pubmed/33413545 http://dx.doi.org/10.1186/s13059-020-02218-6 |
Ejemplares similares
-
Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns
por: Bulajić, Milica, et al.
Publicado: (2020) -
Domain-adaptive neural networks improve cross-species prediction of transcription factor binding
por: Cochran, Kelly, et al.
Publicado: (2022) -
Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes
por: Aydin, Begüm, et al.
Publicado: (2019) -
Joint sequence & chromatin neural networks characterize the differential abilities of Forkhead transcription factors to engage inaccessible chromatin
por: Arora, Sonny, et al.
Publicado: (2023) -
Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility
por: Xing, Qiao Rui, et al.
Publicado: (2020)