Cargando…
SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) enables the possibility of many in-depth transcriptomic analyses at a single-cell resolution. It’s already widely used for exploring the dynamic development process of life, studying the gene regulation mechanism, and discovering new cell types. How...
Autores principales: | Zheng, Yan, Zhong, Yuanke, Hu, Jialu, Shang, Xuequn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7788948/ https://www.ncbi.nlm.nih.gov/pubmed/33407064 http://dx.doi.org/10.1186/s12859-020-03878-8 |
Ejemplares similares
-
An efficient scRNA-seq dropout imputation method using graph attention network
por: Xu, Chenyang, et al.
Publicado: (2021) -
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning
por: Xiong, Zehao, et al.
Publicado: (2023) -
scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods
por: Dai, Chichi, et al.
Publicado: (2022) -
Using DenseFly algorithm for cell searching on massive scRNA-seq datasets
por: Chen, Yixin, et al.
Publicado: (2020) -
A rank-based marker selection method for high throughput scRNA-seq data
por: Vargo, Alexander H. S., et al.
Publicado: (2020)