Cargando…
Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790417/ https://www.ncbi.nlm.nih.gov/pubmed/33362275 http://dx.doi.org/10.1371/journal.pcbi.1008491 |
_version_ | 1783633421184008192 |
---|---|
author | Carcamo-Orive, Ivan Henrion, Marc Y. R. Zhu, Kuixi Beckmann, Noam D. Cundiff, Paige Moein, Sara Zhang, Zenan Alamprese, Melissa D’Souza, Sunita L. Wabitsch, Martin Schadt, Eric E. Quertermous, Thomas Knowles, Joshua W. Chang, Rui |
author_facet | Carcamo-Orive, Ivan Henrion, Marc Y. R. Zhu, Kuixi Beckmann, Noam D. Cundiff, Paige Moein, Sara Zhang, Zenan Alamprese, Melissa D’Souza, Sunita L. Wabitsch, Martin Schadt, Eric E. Quertermous, Thomas Knowles, Joshua W. Chang, Rui |
author_sort | Carcamo-Orive, Ivan |
collection | PubMed |
description | Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has been very limited. Thus, new approaches are necessary to explore the genetic architecture of insulin resistance. To that end, we generated an iPSC library across the spectrum of insulin sensitivity in humans. RNA-seq based analysis of 310 induced pluripotent stem cell (iPSC) clones derived from 100 individuals allowed us to identify differentially expressed genes between insulin resistant and sensitive iPSC lines. Analysis of the co-expression architecture uncovered several insulin sensitivity-relevant gene sub-networks, and predictive network modeling identified a set of key driver genes that regulate these co-expression modules. Functional validation in human adipocytes and skeletal muscle cells (SKMCs) confirmed the relevance of the key driver candidate genes for insulin responsiveness. |
format | Online Article Text |
id | pubmed-7790417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77904172021-01-27 Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness Carcamo-Orive, Ivan Henrion, Marc Y. R. Zhu, Kuixi Beckmann, Noam D. Cundiff, Paige Moein, Sara Zhang, Zenan Alamprese, Melissa D’Souza, Sunita L. Wabitsch, Martin Schadt, Eric E. Quertermous, Thomas Knowles, Joshua W. Chang, Rui PLoS Comput Biol Research Article Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has been very limited. Thus, new approaches are necessary to explore the genetic architecture of insulin resistance. To that end, we generated an iPSC library across the spectrum of insulin sensitivity in humans. RNA-seq based analysis of 310 induced pluripotent stem cell (iPSC) clones derived from 100 individuals allowed us to identify differentially expressed genes between insulin resistant and sensitive iPSC lines. Analysis of the co-expression architecture uncovered several insulin sensitivity-relevant gene sub-networks, and predictive network modeling identified a set of key driver genes that regulate these co-expression modules. Functional validation in human adipocytes and skeletal muscle cells (SKMCs) confirmed the relevance of the key driver candidate genes for insulin responsiveness. Public Library of Science 2020-12-23 /pmc/articles/PMC7790417/ /pubmed/33362275 http://dx.doi.org/10.1371/journal.pcbi.1008491 Text en © 2020 Carcamo-Orive et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Carcamo-Orive, Ivan Henrion, Marc Y. R. Zhu, Kuixi Beckmann, Noam D. Cundiff, Paige Moein, Sara Zhang, Zenan Alamprese, Melissa D’Souza, Sunita L. Wabitsch, Martin Schadt, Eric E. Quertermous, Thomas Knowles, Joshua W. Chang, Rui Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness |
title | Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness |
title_full | Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness |
title_fullStr | Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness |
title_full_unstemmed | Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness |
title_short | Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness |
title_sort | predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790417/ https://www.ncbi.nlm.nih.gov/pubmed/33362275 http://dx.doi.org/10.1371/journal.pcbi.1008491 |
work_keys_str_mv | AT carcamooriveivan predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT henrionmarcyr predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT zhukuixi predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT beckmannnoamd predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT cundiffpaige predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT moeinsara predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT zhangzenan predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT alampresemelissa predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT dsouzasunital predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT wabitschmartin predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT schadterice predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT quertermousthomas predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT knowlesjoshuaw predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness AT changrui predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness |