Cargando…

Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness

Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has...

Descripción completa

Detalles Bibliográficos
Autores principales: Carcamo-Orive, Ivan, Henrion, Marc Y. R., Zhu, Kuixi, Beckmann, Noam D., Cundiff, Paige, Moein, Sara, Zhang, Zenan, Alamprese, Melissa, D’Souza, Sunita L., Wabitsch, Martin, Schadt, Eric E., Quertermous, Thomas, Knowles, Joshua W., Chang, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790417/
https://www.ncbi.nlm.nih.gov/pubmed/33362275
http://dx.doi.org/10.1371/journal.pcbi.1008491
_version_ 1783633421184008192
author Carcamo-Orive, Ivan
Henrion, Marc Y. R.
Zhu, Kuixi
Beckmann, Noam D.
Cundiff, Paige
Moein, Sara
Zhang, Zenan
Alamprese, Melissa
D’Souza, Sunita L.
Wabitsch, Martin
Schadt, Eric E.
Quertermous, Thomas
Knowles, Joshua W.
Chang, Rui
author_facet Carcamo-Orive, Ivan
Henrion, Marc Y. R.
Zhu, Kuixi
Beckmann, Noam D.
Cundiff, Paige
Moein, Sara
Zhang, Zenan
Alamprese, Melissa
D’Souza, Sunita L.
Wabitsch, Martin
Schadt, Eric E.
Quertermous, Thomas
Knowles, Joshua W.
Chang, Rui
author_sort Carcamo-Orive, Ivan
collection PubMed
description Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has been very limited. Thus, new approaches are necessary to explore the genetic architecture of insulin resistance. To that end, we generated an iPSC library across the spectrum of insulin sensitivity in humans. RNA-seq based analysis of 310 induced pluripotent stem cell (iPSC) clones derived from 100 individuals allowed us to identify differentially expressed genes between insulin resistant and sensitive iPSC lines. Analysis of the co-expression architecture uncovered several insulin sensitivity-relevant gene sub-networks, and predictive network modeling identified a set of key driver genes that regulate these co-expression modules. Functional validation in human adipocytes and skeletal muscle cells (SKMCs) confirmed the relevance of the key driver candidate genes for insulin responsiveness.
format Online
Article
Text
id pubmed-7790417
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-77904172021-01-27 Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness Carcamo-Orive, Ivan Henrion, Marc Y. R. Zhu, Kuixi Beckmann, Noam D. Cundiff, Paige Moein, Sara Zhang, Zenan Alamprese, Melissa D’Souza, Sunita L. Wabitsch, Martin Schadt, Eric E. Quertermous, Thomas Knowles, Joshua W. Chang, Rui PLoS Comput Biol Research Article Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has been very limited. Thus, new approaches are necessary to explore the genetic architecture of insulin resistance. To that end, we generated an iPSC library across the spectrum of insulin sensitivity in humans. RNA-seq based analysis of 310 induced pluripotent stem cell (iPSC) clones derived from 100 individuals allowed us to identify differentially expressed genes between insulin resistant and sensitive iPSC lines. Analysis of the co-expression architecture uncovered several insulin sensitivity-relevant gene sub-networks, and predictive network modeling identified a set of key driver genes that regulate these co-expression modules. Functional validation in human adipocytes and skeletal muscle cells (SKMCs) confirmed the relevance of the key driver candidate genes for insulin responsiveness. Public Library of Science 2020-12-23 /pmc/articles/PMC7790417/ /pubmed/33362275 http://dx.doi.org/10.1371/journal.pcbi.1008491 Text en © 2020 Carcamo-Orive et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Carcamo-Orive, Ivan
Henrion, Marc Y. R.
Zhu, Kuixi
Beckmann, Noam D.
Cundiff, Paige
Moein, Sara
Zhang, Zenan
Alamprese, Melissa
D’Souza, Sunita L.
Wabitsch, Martin
Schadt, Eric E.
Quertermous, Thomas
Knowles, Joshua W.
Chang, Rui
Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
title Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
title_full Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
title_fullStr Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
title_full_unstemmed Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
title_short Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
title_sort predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790417/
https://www.ncbi.nlm.nih.gov/pubmed/33362275
http://dx.doi.org/10.1371/journal.pcbi.1008491
work_keys_str_mv AT carcamooriveivan predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT henrionmarcyr predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT zhukuixi predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT beckmannnoamd predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT cundiffpaige predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT moeinsara predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT zhangzenan predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT alampresemelissa predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT dsouzasunital predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT wabitschmartin predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT schadterice predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT quertermousthomas predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT knowlesjoshuaw predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness
AT changrui predictivenetworkmodelinginhumaninducedpluripotentstemcellsidentifieskeydrivergenesforinsulinresponsiveness