Cargando…
T cell co-stimulator inducible co-stimulatory (ICOS) exerts potential anti-atherosclerotic roles through downregulation of vascular smooth muscle phagocytosis and proliferation
BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory disease. The role of the immune system in the etiology of the disease, particularly T cells, has been widely studied and is well established. T cell activation directly regulates co-signaling molecules present in immune synapses. Targeting o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791234/ https://www.ncbi.nlm.nih.gov/pubmed/33437796 http://dx.doi.org/10.21037/atm-20-7342 |
Sumario: | BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory disease. The role of the immune system in the etiology of the disease, particularly T cells, has been widely studied and is well established. T cell activation directly regulates co-signaling molecules present in immune synapses. Targeting one or several of these co-signaling molecules can inhibit T cell-mediated inflammation and delay or reduce AS. In recent years, this strategy has increasingly become a research focus. As such, we explored the role and therapeutic potential of the T cell co-stimulatory molecule inducible co-stimulatory (ICOS) in AS. METHODS: We compared the expression of ICOS in early AS lesions occurring in ApoE-deficient (ApoE-KO) rats fed a fat-diet and wild type (WT) rats fed the same diet. Eight-week old ApoE-KO and WT rats [ApoE-KO(0) and WT(0)] were fed a high-fat diet for 16 weeks [ApoE-KO(16) and WT(16)]. ICOS expression in aortic tissues was analyzed by quantitative real-time PCR, western blot, and confocal microscopy. The effect of ICOS overexpression in a transfected human T cell line on the phagocytosis and proliferation of co-cultured human aortic smooth muscle cells (HASMCs) was studied in vitro. RESULTS: Compared with WT(0), ApoE-KO(0), and WT(16) rats, ICOS expression in ApoE-KO(16) rats was significantly down-regulated both at the mRNA and protein levels. In vitro experiments indicated that ICOS overexpression reduces phagocytosis and proliferation by HASMCs, and may therefore produce an anti-atherosclerotic effect. CONCLUSIONS: The immune synaptic co-signaling molecule ICOS has an anti-atherosclerotic effect through inhibition of HASMC phagocytosis and proliferation, and can be used to delay plaque formation during the early stages of AS. |
---|