Cargando…

Real-time and non-destructive hydrocarbon gas sensing using mid-infrared integrated photonic circuits

A chip-scale mid-infrared (mid-IR) sensor was developed for hydrocarbon gas detection. The sensor consisted of amorphous Si (a-Si) optical ridge waveguides that were fabricated by complementary metal–oxide–semiconductor (CMOS) processes. The waveguide exhibited a sharp fundamental mode through λ = 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Tiening, Zhou, Junchao, Lin, Pao Tai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793566/
https://www.ncbi.nlm.nih.gov/pubmed/33425327
http://dx.doi.org/10.1039/c9ra10058j
Descripción
Sumario:A chip-scale mid-infrared (mid-IR) sensor was developed for hydrocarbon gas detection. The sensor consisted of amorphous Si (a-Si) optical ridge waveguides that were fabricated by complementary metal–oxide–semiconductor (CMOS) processes. The waveguide exhibited a sharp fundamental mode through λ = 2.70 to 3.50 μm. Its sensing performance was characterized by measuring methane and acetylene. From the spectral mode attenuation, the characteristic C–H absorption bands associated with methane and acetylene were found at λ = 3.29–3.33 μm and λ = 3.00–3.06 μm, respectively. In addition, real-time methane and acetylene concentration monitoring was demonstrated at λ = 3.02 and 3.32 μm. Hence, the mid-IR waveguide sensor enabled an accurate and instantaneous analysis of hydrocarbon gas mixtures.