Cargando…

Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire

Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)(2)O(3) alloys spanning bandgaps of 5.4 to 8.6 eV c...

Descripción completa

Detalles Bibliográficos
Autores principales: Jinno, Riena, Chang, Celesta S., Onuma, Takeyoshi, Cho, Yongjin, Ho, Shao-Ting, Rowe, Derek, Cao, Michael C., Lee, Kevin, Protasenko, Vladimir, Schlom, Darrell G., Muller, David A., Xing, Huili G., Jena, Debdeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793576/
https://www.ncbi.nlm.nih.gov/pubmed/33523991
http://dx.doi.org/10.1126/sciadv.abd5891
_version_ 1783634019601088512
author Jinno, Riena
Chang, Celesta S.
Onuma, Takeyoshi
Cho, Yongjin
Ho, Shao-Ting
Rowe, Derek
Cao, Michael C.
Lee, Kevin
Protasenko, Vladimir
Schlom, Darrell G.
Muller, David A.
Xing, Huili G.
Jena, Debdeep
author_facet Jinno, Riena
Chang, Celesta S.
Onuma, Takeyoshi
Cho, Yongjin
Ho, Shao-Ting
Rowe, Derek
Cao, Michael C.
Lee, Kevin
Protasenko, Vladimir
Schlom, Darrell G.
Muller, David A.
Xing, Huili G.
Jena, Debdeep
author_sort Jinno, Riena
collection PubMed
description Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)(2)O(3) alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap β-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date.
format Online
Article
Text
id pubmed-7793576
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-77935762021-01-15 Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire Jinno, Riena Chang, Celesta S. Onuma, Takeyoshi Cho, Yongjin Ho, Shao-Ting Rowe, Derek Cao, Michael C. Lee, Kevin Protasenko, Vladimir Schlom, Darrell G. Muller, David A. Xing, Huili G. Jena, Debdeep Sci Adv Research Articles Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)(2)O(3) alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap β-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date. American Association for the Advancement of Science 2021-01-08 /pmc/articles/PMC7793576/ /pubmed/33523991 http://dx.doi.org/10.1126/sciadv.abd5891 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Jinno, Riena
Chang, Celesta S.
Onuma, Takeyoshi
Cho, Yongjin
Ho, Shao-Ting
Rowe, Derek
Cao, Michael C.
Lee, Kevin
Protasenko, Vladimir
Schlom, Darrell G.
Muller, David A.
Xing, Huili G.
Jena, Debdeep
Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire
title Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire
title_full Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire
title_fullStr Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire
title_full_unstemmed Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire
title_short Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire
title_sort crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-ev α-(alga)(2)o(3) on m-plane sapphire
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793576/
https://www.ncbi.nlm.nih.gov/pubmed/33523991
http://dx.doi.org/10.1126/sciadv.abd5891
work_keys_str_mv AT jinnoriena crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT changcelestas crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT onumatakeyoshi crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT choyongjin crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT hoshaoting crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT rowederek crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT caomichaelc crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT leekevin crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT protasenkovladimir crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT schlomdarrellg crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT mullerdavida crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT xinghuilig crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire
AT jenadebdeep crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire