Cargando…
Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire
Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)(2)O(3) alloys spanning bandgaps of 5.4 to 8.6 eV c...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793576/ https://www.ncbi.nlm.nih.gov/pubmed/33523991 http://dx.doi.org/10.1126/sciadv.abd5891 |
_version_ | 1783634019601088512 |
---|---|
author | Jinno, Riena Chang, Celesta S. Onuma, Takeyoshi Cho, Yongjin Ho, Shao-Ting Rowe, Derek Cao, Michael C. Lee, Kevin Protasenko, Vladimir Schlom, Darrell G. Muller, David A. Xing, Huili G. Jena, Debdeep |
author_facet | Jinno, Riena Chang, Celesta S. Onuma, Takeyoshi Cho, Yongjin Ho, Shao-Ting Rowe, Derek Cao, Michael C. Lee, Kevin Protasenko, Vladimir Schlom, Darrell G. Muller, David A. Xing, Huili G. Jena, Debdeep |
author_sort | Jinno, Riena |
collection | PubMed |
description | Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)(2)O(3) alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap β-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date. |
format | Online Article Text |
id | pubmed-7793576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77935762021-01-15 Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire Jinno, Riena Chang, Celesta S. Onuma, Takeyoshi Cho, Yongjin Ho, Shao-Ting Rowe, Derek Cao, Michael C. Lee, Kevin Protasenko, Vladimir Schlom, Darrell G. Muller, David A. Xing, Huili G. Jena, Debdeep Sci Adv Research Articles Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)(2)O(3) alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap β-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date. American Association for the Advancement of Science 2021-01-08 /pmc/articles/PMC7793576/ /pubmed/33523991 http://dx.doi.org/10.1126/sciadv.abd5891 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Jinno, Riena Chang, Celesta S. Onuma, Takeyoshi Cho, Yongjin Ho, Shao-Ting Rowe, Derek Cao, Michael C. Lee, Kevin Protasenko, Vladimir Schlom, Darrell G. Muller, David A. Xing, Huili G. Jena, Debdeep Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire |
title | Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire |
title_full | Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire |
title_fullStr | Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire |
title_full_unstemmed | Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire |
title_short | Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)(2)O(3) on m-plane sapphire |
title_sort | crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-ev α-(alga)(2)o(3) on m-plane sapphire |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793576/ https://www.ncbi.nlm.nih.gov/pubmed/33523991 http://dx.doi.org/10.1126/sciadv.abd5891 |
work_keys_str_mv | AT jinnoriena crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT changcelestas crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT onumatakeyoshi crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT choyongjin crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT hoshaoting crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT rowederek crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT caomichaelc crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT leekevin crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT protasenkovladimir crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT schlomdarrellg crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT mullerdavida crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT xinghuilig crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire AT jenadebdeep crystalorientationdictatedepitaxyofultrawidebandgap54to86evaalga2o3onmplanesapphire |