Cargando…

New Evidence for P-gp-Mediated Export of Amyloid-β Peptides in Molecular, Blood-Brain Barrier and Neuronal Models

Defective clearance mechanisms lead to the accumulation of amyloid-beta (Aβ) peptides in the Alzheimer’s brain. Though predominantly generated in neurons, little is known about how these hydrophobic, aggregation-prone, and tightly membrane-associated peptides exit into the extracellular space where...

Descripción completa

Detalles Bibliográficos
Autores principales: Chai, Amanda B., Hartz, Anika M. S., Gao, Xuexin, Yang, Alryel, Callaghan, Richard, Gelissen, Ingrid C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795149/
https://www.ncbi.nlm.nih.gov/pubmed/33383667
http://dx.doi.org/10.3390/ijms22010246
Descripción
Sumario:Defective clearance mechanisms lead to the accumulation of amyloid-beta (Aβ) peptides in the Alzheimer’s brain. Though predominantly generated in neurons, little is known about how these hydrophobic, aggregation-prone, and tightly membrane-associated peptides exit into the extracellular space where they deposit and propagate neurotoxicity. The ability for P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, to export Aβ across the blood-brain barrier (BBB) has previously been reported. However, controversies surrounding the P-gp–Aβ interaction persist. Here, molecular data affirm that both Aβ(40) and Aβ(42) peptide isoforms directly interact with and are substrates of P-gp. This was reinforced ex vivo by the inhibition of Aβ(42) transport in brain capillaries from P-gp-knockout mice. Moreover, we explored whether P-gp could exert the same role in neurons. Comparison between non-neuronal CHO-APP and human neuroblastoma SK-N-SH cells revealed that P-gp is expressed and active in both cell types. Inhibiting P-gp activity using verapamil and nicardipine impaired Aβ(40) and Aβ(42) secretion from both cell types, as determined by ELISA. Collectively, these findings implicate P-gp in Aβ export from neurons, as well as across the BBB endothelium, and suggest that restoring or enhancing P-gp function could be a viable therapeutic approach for removing excess Aβ out of the brain in Alzheimer’s disease.