Cargando…
Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity
Total phenolic compounds (TPC) and the chlorogenic acids content of potato by-product extracts of two hydro alcoholic solvents (methanol, ethanol) and two extraction methods (maceration and heating-assisted extraction) were studied. The content of TPC in the extracts was determined spectrometrically...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796066/ https://www.ncbi.nlm.nih.gov/pubmed/33396560 http://dx.doi.org/10.3390/molecules26010177 |
Sumario: | Total phenolic compounds (TPC) and the chlorogenic acids content of potato by-product extracts of two hydro alcoholic solvents (methanol, ethanol) and two extraction methods (maceration and heating-assisted extraction) were studied. The content of TPC in the extracts was determined spectrometrically according to the Folin–Ciocalteu procedure and calculated as chlorogenic acid equivalents. Soluble phenolic acids, especially the chlorogenic acids, were performed by HPLC. The antioxidant activity of potato by-product extracts was determined by using the total oxygen radical absorbance capacity (ORAC) method. The highest content of TPC was found in raw and lyophilized red waters when using ethanol as a solvent around 57 mg/g fresh weight. Heating-assisted extraction enhances this quantitative increasing. At the given operating conditions, unpeeled potato samples exhibit a higher TPC than peeled ones, showing that TPC are accumulated in skin tissue. The greatest amount of chlorogenic acid (Caffeoyl-Quinic Acids, 3, 4, 5 CQA), mainly the 5-CQA (870 ± 39.66 µg/g WM for wet matter versus DM dry matter), was obtained in the pellets and lyophilized fresh peels (skin vs. flesh). In addition, the greatest amounts of chlorogenic acids were found when potato peels were extracted with methanol. Heating-assisted extraction improved the chlorogenic acid concentration of the potato peel extracts. The total ORAC amounts recorded in the different potato fractions varied between 1500 and 1650 µM TE/g. They were higher than those of some fruits, vegetables, nuts, cereals, and sweet potato cultivar. The good correlation coefficient found between TPC, chlorogenic acids determination, and the ORAC capacity indicates that the TPC can be used as a good indicator of the antioxidant capacity of potato by-products. |
---|