Cargando…
Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a multi‐system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799365/ https://www.ncbi.nlm.nih.gov/pubmed/33270986 http://dx.doi.org/10.15252/emmm.202012595 |
_version_ | 1783635120163389440 |
---|---|
author | Placek, Katerina Benatar, Michael Wuu, Joanne Rampersaud, Evadnie Hennessy, Laura Van Deerlin, Vivianna M Grossman, Murray Irwin, David J Elman, Lauren McCluskey, Leo Quinn, Colin Granit, Volkan Statland, Jeffrey M Burns, Ted M Ravits, John Swenson, Andrea Katz, Jon Pioro, Erik P Jackson, Carlayne Caress, James So, Yuen Maiser, Samuel Walk, David Lee, Edward B Trojanowski, John Q Cook, Philip Gee, James Sha, Jin Naj, Adam C Rademakers, Rosa Chen, Wenan Wu, Gang Paul Taylor, J McMillan, Corey T |
author_facet | Placek, Katerina Benatar, Michael Wuu, Joanne Rampersaud, Evadnie Hennessy, Laura Van Deerlin, Vivianna M Grossman, Murray Irwin, David J Elman, Lauren McCluskey, Leo Quinn, Colin Granit, Volkan Statland, Jeffrey M Burns, Ted M Ravits, John Swenson, Andrea Katz, Jon Pioro, Erik P Jackson, Carlayne Caress, James So, Yuen Maiser, Samuel Walk, David Lee, Edward B Trojanowski, John Q Cook, Philip Gee, James Sha, Jin Naj, Adam C Rademakers, Rosa Chen, Wenan Wu, Gang Paul Taylor, J McMillan, Corey T |
author_sort | Placek, Katerina |
collection | PubMed |
description | Amyotrophic lateral sclerosis (ALS) is a multi‐system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine‐learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post‐mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS. |
format | Online Article Text |
id | pubmed-7799365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77993652021-01-15 Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis Placek, Katerina Benatar, Michael Wuu, Joanne Rampersaud, Evadnie Hennessy, Laura Van Deerlin, Vivianna M Grossman, Murray Irwin, David J Elman, Lauren McCluskey, Leo Quinn, Colin Granit, Volkan Statland, Jeffrey M Burns, Ted M Ravits, John Swenson, Andrea Katz, Jon Pioro, Erik P Jackson, Carlayne Caress, James So, Yuen Maiser, Samuel Walk, David Lee, Edward B Trojanowski, John Q Cook, Philip Gee, James Sha, Jin Naj, Adam C Rademakers, Rosa Chen, Wenan Wu, Gang Paul Taylor, J McMillan, Corey T EMBO Mol Med Articles Amyotrophic lateral sclerosis (ALS) is a multi‐system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine‐learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post‐mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS. John Wiley and Sons Inc. 2020-12-03 2021-01-11 /pmc/articles/PMC7799365/ /pubmed/33270986 http://dx.doi.org/10.15252/emmm.202012595 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Placek, Katerina Benatar, Michael Wuu, Joanne Rampersaud, Evadnie Hennessy, Laura Van Deerlin, Vivianna M Grossman, Murray Irwin, David J Elman, Lauren McCluskey, Leo Quinn, Colin Granit, Volkan Statland, Jeffrey M Burns, Ted M Ravits, John Swenson, Andrea Katz, Jon Pioro, Erik P Jackson, Carlayne Caress, James So, Yuen Maiser, Samuel Walk, David Lee, Edward B Trojanowski, John Q Cook, Philip Gee, James Sha, Jin Naj, Adam C Rademakers, Rosa Chen, Wenan Wu, Gang Paul Taylor, J McMillan, Corey T Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis |
title | Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis |
title_full | Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis |
title_fullStr | Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis |
title_full_unstemmed | Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis |
title_short | Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis |
title_sort | machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799365/ https://www.ncbi.nlm.nih.gov/pubmed/33270986 http://dx.doi.org/10.15252/emmm.202012595 |
work_keys_str_mv | AT placekkaterina machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT benatarmichael machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT wuujoanne machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT rampersaudevadnie machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT hennessylaura machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT vandeerlinviviannam machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT grossmanmurray machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT irwindavidj machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT elmanlauren machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT mccluskeyleo machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT quinncolin machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT granitvolkan machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT statlandjeffreym machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT burnstedm machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT ravitsjohn machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT swensonandrea machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT katzjon machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT pioroerikp machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT jacksoncarlayne machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT caressjames machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT soyuen machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT maisersamuel machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT walkdavid machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT leeedwardb machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT trojanowskijohnq machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT cookphilip machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT geejames machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT shajin machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT najadamc machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT rademakersrosa machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT chenwenan machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT wugang machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT paultaylorj machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis AT mcmillancoreyt machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis |