Cargando…

Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a multi‐system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA)...

Descripción completa

Detalles Bibliográficos
Autores principales: Placek, Katerina, Benatar, Michael, Wuu, Joanne, Rampersaud, Evadnie, Hennessy, Laura, Van Deerlin, Vivianna M, Grossman, Murray, Irwin, David J, Elman, Lauren, McCluskey, Leo, Quinn, Colin, Granit, Volkan, Statland, Jeffrey M, Burns, Ted M, Ravits, John, Swenson, Andrea, Katz, Jon, Pioro, Erik P, Jackson, Carlayne, Caress, James, So, Yuen, Maiser, Samuel, Walk, David, Lee, Edward B, Trojanowski, John Q, Cook, Philip, Gee, James, Sha, Jin, Naj, Adam C, Rademakers, Rosa, Chen, Wenan, Wu, Gang, Paul Taylor, J, McMillan, Corey T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799365/
https://www.ncbi.nlm.nih.gov/pubmed/33270986
http://dx.doi.org/10.15252/emmm.202012595
_version_ 1783635120163389440
author Placek, Katerina
Benatar, Michael
Wuu, Joanne
Rampersaud, Evadnie
Hennessy, Laura
Van Deerlin, Vivianna M
Grossman, Murray
Irwin, David J
Elman, Lauren
McCluskey, Leo
Quinn, Colin
Granit, Volkan
Statland, Jeffrey M
Burns, Ted M
Ravits, John
Swenson, Andrea
Katz, Jon
Pioro, Erik P
Jackson, Carlayne
Caress, James
So, Yuen
Maiser, Samuel
Walk, David
Lee, Edward B
Trojanowski, John Q
Cook, Philip
Gee, James
Sha, Jin
Naj, Adam C
Rademakers, Rosa
Chen, Wenan
Wu, Gang
Paul Taylor, J
McMillan, Corey T
author_facet Placek, Katerina
Benatar, Michael
Wuu, Joanne
Rampersaud, Evadnie
Hennessy, Laura
Van Deerlin, Vivianna M
Grossman, Murray
Irwin, David J
Elman, Lauren
McCluskey, Leo
Quinn, Colin
Granit, Volkan
Statland, Jeffrey M
Burns, Ted M
Ravits, John
Swenson, Andrea
Katz, Jon
Pioro, Erik P
Jackson, Carlayne
Caress, James
So, Yuen
Maiser, Samuel
Walk, David
Lee, Edward B
Trojanowski, John Q
Cook, Philip
Gee, James
Sha, Jin
Naj, Adam C
Rademakers, Rosa
Chen, Wenan
Wu, Gang
Paul Taylor, J
McMillan, Corey T
author_sort Placek, Katerina
collection PubMed
description Amyotrophic lateral sclerosis (ALS) is a multi‐system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine‐learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post‐mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS.
format Online
Article
Text
id pubmed-7799365
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77993652021-01-15 Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis Placek, Katerina Benatar, Michael Wuu, Joanne Rampersaud, Evadnie Hennessy, Laura Van Deerlin, Vivianna M Grossman, Murray Irwin, David J Elman, Lauren McCluskey, Leo Quinn, Colin Granit, Volkan Statland, Jeffrey M Burns, Ted M Ravits, John Swenson, Andrea Katz, Jon Pioro, Erik P Jackson, Carlayne Caress, James So, Yuen Maiser, Samuel Walk, David Lee, Edward B Trojanowski, John Q Cook, Philip Gee, James Sha, Jin Naj, Adam C Rademakers, Rosa Chen, Wenan Wu, Gang Paul Taylor, J McMillan, Corey T EMBO Mol Med Articles Amyotrophic lateral sclerosis (ALS) is a multi‐system disease characterized primarily by progressive muscle weakness. Cognitive dysfunction is commonly observed in patients; however, factors influencing risk for cognitive dysfunction remain elusive. Using sparse canonical correlation analysis (sCCA), an unsupervised machine‐learning technique, we observed that single nucleotide polymorphisms collectively associate with baseline cognitive performance in a large ALS patient cohort (N = 327) from the multicenter Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium. We demonstrate that a polygenic risk score derived using sCCA relates to longitudinal cognitive decline in the same cohort and also to in vivo cortical thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal cortex, premotor cortex, and hippocampus (N = 90) as well as post‐mortem motor cortical neuronal loss (N = 87) in independent ALS cohorts from the University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our findings suggest that common genetic polymorphisms may exert a polygenic contribution to the risk of cortical disease vulnerability and cognitive dysfunction in ALS. John Wiley and Sons Inc. 2020-12-03 2021-01-11 /pmc/articles/PMC7799365/ /pubmed/33270986 http://dx.doi.org/10.15252/emmm.202012595 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Placek, Katerina
Benatar, Michael
Wuu, Joanne
Rampersaud, Evadnie
Hennessy, Laura
Van Deerlin, Vivianna M
Grossman, Murray
Irwin, David J
Elman, Lauren
McCluskey, Leo
Quinn, Colin
Granit, Volkan
Statland, Jeffrey M
Burns, Ted M
Ravits, John
Swenson, Andrea
Katz, Jon
Pioro, Erik P
Jackson, Carlayne
Caress, James
So, Yuen
Maiser, Samuel
Walk, David
Lee, Edward B
Trojanowski, John Q
Cook, Philip
Gee, James
Sha, Jin
Naj, Adam C
Rademakers, Rosa
Chen, Wenan
Wu, Gang
Paul Taylor, J
McMillan, Corey T
Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
title Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
title_full Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
title_fullStr Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
title_full_unstemmed Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
title_short Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
title_sort machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799365/
https://www.ncbi.nlm.nih.gov/pubmed/33270986
http://dx.doi.org/10.15252/emmm.202012595
work_keys_str_mv AT placekkaterina machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT benatarmichael machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT wuujoanne machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT rampersaudevadnie machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT hennessylaura machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT vandeerlinviviannam machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT grossmanmurray machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT irwindavidj machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT elmanlauren machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT mccluskeyleo machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT quinncolin machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT granitvolkan machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT statlandjeffreym machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT burnstedm machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT ravitsjohn machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT swensonandrea machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT katzjon machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT pioroerikp machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT jacksoncarlayne machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT caressjames machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT soyuen machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT maisersamuel machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT walkdavid machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT leeedwardb machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT trojanowskijohnq machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT cookphilip machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT geejames machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT shajin machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT najadamc machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT rademakersrosa machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT chenwenan machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT wugang machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT paultaylorj machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis
AT mcmillancoreyt machinelearningsuggestspolygenicriskforcognitivedysfunctioninamyotrophiclateralsclerosis