Cargando…

Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids

Duplication or deficiency of the X‐linked MECP2 gene reliably produces profound neurodevelopmental impairment. MECP2 mutations are almost universally responsible for Rett syndrome (RTT), and particular mutations and cellular mosaicism of MECP2 may underlie the spectrum of RTT symptomatic severity. N...

Descripción completa

Detalles Bibliográficos
Autores principales: Trujillo, Cleber A, Adams, Jason W, Negraes, Priscilla D, Carromeu, Cassiano, Tejwani, Leon, Acab, Allan, Tsuda, Ben, Thomas, Charles A, Sodhi, Neha, Fichter, Katherine M, Romero, Sarah, Zanella, Fabian, Sejnowski, Terrence J, Ulrich, Henning, Muotri, Alysson R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799367/
https://www.ncbi.nlm.nih.gov/pubmed/33501759
http://dx.doi.org/10.15252/emmm.202012523
_version_ 1783635120639442944
author Trujillo, Cleber A
Adams, Jason W
Negraes, Priscilla D
Carromeu, Cassiano
Tejwani, Leon
Acab, Allan
Tsuda, Ben
Thomas, Charles A
Sodhi, Neha
Fichter, Katherine M
Romero, Sarah
Zanella, Fabian
Sejnowski, Terrence J
Ulrich, Henning
Muotri, Alysson R
author_facet Trujillo, Cleber A
Adams, Jason W
Negraes, Priscilla D
Carromeu, Cassiano
Tejwani, Leon
Acab, Allan
Tsuda, Ben
Thomas, Charles A
Sodhi, Neha
Fichter, Katherine M
Romero, Sarah
Zanella, Fabian
Sejnowski, Terrence J
Ulrich, Henning
Muotri, Alysson R
author_sort Trujillo, Cleber A
collection PubMed
description Duplication or deficiency of the X‐linked MECP2 gene reliably produces profound neurodevelopmental impairment. MECP2 mutations are almost universally responsible for Rett syndrome (RTT), and particular mutations and cellular mosaicism of MECP2 may underlie the spectrum of RTT symptomatic severity. No clinically approved treatments for RTT are currently available, but human pluripotent stem cell technology offers a platform to identify neuropathology and test candidate therapeutics. Using a strategic series of increasingly complex human stem cell‐derived technologies, including human neurons, MECP2‐mosaic neurospheres to model RTT female brain mosaicism, and cortical organoids, we identified synaptic dysregulation downstream from knockout of MECP2 and screened select pharmacological compounds for their ability to treat this dysfunction. Two lead compounds, Nefiracetam and PHA 543613, specifically reversed MECP2‐knockout cytologic neuropathology. The capacity of these compounds to reverse neuropathologic phenotypes and networks in human models supports clinical studies for neurodevelopmental disorders in which MeCP2 deficiency is the predominant etiology.
format Online
Article
Text
id pubmed-7799367
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77993672021-01-15 Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids Trujillo, Cleber A Adams, Jason W Negraes, Priscilla D Carromeu, Cassiano Tejwani, Leon Acab, Allan Tsuda, Ben Thomas, Charles A Sodhi, Neha Fichter, Katherine M Romero, Sarah Zanella, Fabian Sejnowski, Terrence J Ulrich, Henning Muotri, Alysson R EMBO Mol Med Articles Duplication or deficiency of the X‐linked MECP2 gene reliably produces profound neurodevelopmental impairment. MECP2 mutations are almost universally responsible for Rett syndrome (RTT), and particular mutations and cellular mosaicism of MECP2 may underlie the spectrum of RTT symptomatic severity. No clinically approved treatments for RTT are currently available, but human pluripotent stem cell technology offers a platform to identify neuropathology and test candidate therapeutics. Using a strategic series of increasingly complex human stem cell‐derived technologies, including human neurons, MECP2‐mosaic neurospheres to model RTT female brain mosaicism, and cortical organoids, we identified synaptic dysregulation downstream from knockout of MECP2 and screened select pharmacological compounds for their ability to treat this dysfunction. Two lead compounds, Nefiracetam and PHA 543613, specifically reversed MECP2‐knockout cytologic neuropathology. The capacity of these compounds to reverse neuropathologic phenotypes and networks in human models supports clinical studies for neurodevelopmental disorders in which MeCP2 deficiency is the predominant etiology. John Wiley and Sons Inc. 2020-12-08 2021-01-11 /pmc/articles/PMC7799367/ /pubmed/33501759 http://dx.doi.org/10.15252/emmm.202012523 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Trujillo, Cleber A
Adams, Jason W
Negraes, Priscilla D
Carromeu, Cassiano
Tejwani, Leon
Acab, Allan
Tsuda, Ben
Thomas, Charles A
Sodhi, Neha
Fichter, Katherine M
Romero, Sarah
Zanella, Fabian
Sejnowski, Terrence J
Ulrich, Henning
Muotri, Alysson R
Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
title Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
title_full Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
title_fullStr Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
title_full_unstemmed Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
title_short Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
title_sort pharmacological reversal of synaptic and network pathology in human mecp2‐ko neurons and cortical organoids
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799367/
https://www.ncbi.nlm.nih.gov/pubmed/33501759
http://dx.doi.org/10.15252/emmm.202012523
work_keys_str_mv AT trujilloclebera pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT adamsjasonw pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT negraespriscillad pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT carromeucassiano pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT tejwanileon pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT acaballan pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT tsudaben pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT thomascharlesa pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT sodhineha pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT fichterkatherinem pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT romerosarah pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT zanellafabian pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT sejnowskiterrencej pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT ulrichhenning pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids
AT muotrialyssonr pharmacologicalreversalofsynapticandnetworkpathologyinhumanmecp2koneuronsandcorticalorganoids