Cargando…

Computational deconvolution to estimate cell type-specific gene expression from bulk data

Computational deconvolution is a time and cost-efficient approach to obtain cell type-specific information from bulk gene expression of heterogeneous tissues like blood. Deconvolution can aim to either estimate cell type proportions or abundances in samples, or estimate how strongly each present cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaakkola, Maria K, Elo, Laura L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803005/
https://www.ncbi.nlm.nih.gov/pubmed/33575652
http://dx.doi.org/10.1093/nargab/lqaa110
_version_ 1783635860031275008
author Jaakkola, Maria K
Elo, Laura L
author_facet Jaakkola, Maria K
Elo, Laura L
author_sort Jaakkola, Maria K
collection PubMed
description Computational deconvolution is a time and cost-efficient approach to obtain cell type-specific information from bulk gene expression of heterogeneous tissues like blood. Deconvolution can aim to either estimate cell type proportions or abundances in samples, or estimate how strongly each present cell type expresses different genes, or both tasks simultaneously. Among the two separate goals, the estimation of cell type proportions/abundances is widely studied, but less attention has been paid on defining the cell type-specific expression profiles. Here, we address this gap by introducing a novel method Rodeo and empirically evaluating it and the other available tools from multiple perspectives utilizing diverse datasets.
format Online
Article
Text
id pubmed-7803005
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-78030052021-02-10 Computational deconvolution to estimate cell type-specific gene expression from bulk data Jaakkola, Maria K Elo, Laura L NAR Genom Bioinform Methods Article Computational deconvolution is a time and cost-efficient approach to obtain cell type-specific information from bulk gene expression of heterogeneous tissues like blood. Deconvolution can aim to either estimate cell type proportions or abundances in samples, or estimate how strongly each present cell type expresses different genes, or both tasks simultaneously. Among the two separate goals, the estimation of cell type proportions/abundances is widely studied, but less attention has been paid on defining the cell type-specific expression profiles. Here, we address this gap by introducing a novel method Rodeo and empirically evaluating it and the other available tools from multiple perspectives utilizing diverse datasets. Oxford University Press 2021-01-12 /pmc/articles/PMC7803005/ /pubmed/33575652 http://dx.doi.org/10.1093/nargab/lqaa110 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods Article
Jaakkola, Maria K
Elo, Laura L
Computational deconvolution to estimate cell type-specific gene expression from bulk data
title Computational deconvolution to estimate cell type-specific gene expression from bulk data
title_full Computational deconvolution to estimate cell type-specific gene expression from bulk data
title_fullStr Computational deconvolution to estimate cell type-specific gene expression from bulk data
title_full_unstemmed Computational deconvolution to estimate cell type-specific gene expression from bulk data
title_short Computational deconvolution to estimate cell type-specific gene expression from bulk data
title_sort computational deconvolution to estimate cell type-specific gene expression from bulk data
topic Methods Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803005/
https://www.ncbi.nlm.nih.gov/pubmed/33575652
http://dx.doi.org/10.1093/nargab/lqaa110
work_keys_str_mv AT jaakkolamariak computationaldeconvolutiontoestimatecelltypespecificgeneexpressionfrombulkdata
AT elolaural computationaldeconvolutiontoestimatecelltypespecificgeneexpressionfrombulkdata