Cargando…
Computational deconvolution to estimate cell type-specific gene expression from bulk data
Computational deconvolution is a time and cost-efficient approach to obtain cell type-specific information from bulk gene expression of heterogeneous tissues like blood. Deconvolution can aim to either estimate cell type proportions or abundances in samples, or estimate how strongly each present cel...
Autores principales: | Jaakkola, Maria K, Elo, Laura L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803005/ https://www.ncbi.nlm.nih.gov/pubmed/33575652 http://dx.doi.org/10.1093/nargab/lqaa110 |
Ejemplares similares
-
Estimating cell type-specific differential expression using deconvolution
por: Jaakkola, Maria K, et al.
Publicado: (2021) -
Likelihood-based deconvolution of bulk gene expression data using single-cell references
por: Erdmann-Pham, Dan D., et al.
Publicado: (2021) -
EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
por: Teschendorff, Andrew E., et al.
Publicado: (2020) -
BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures
por: Ghaffari, Saba, et al.
Publicado: (2023) -
THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data
por: Rowland, Bryce, et al.
Publicado: (2022)