Cargando…
Task Feasibility Maximization Using Model-Free Policy Search and Model-Based Whole-Body Control
Producing feasible motions for highly redundant robots, such as humanoids, is a complicated and high-dimensional problem. Model-based whole-body control of such robots can generate complex dynamic behaviors through the simultaneous execution of multiple tasks. Unfortunately, tasks are generally plan...
Autores principales: | Lober, Ryan, Sigaud, Olivier, Padois, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805637/ https://www.ncbi.nlm.nih.gov/pubmed/33501229 http://dx.doi.org/10.3389/frobt.2020.00061 |
Ejemplares similares
-
Optimization-Based Controllers for Robotics Applications (OCRA): The Case of iCub’s Whole-Body Control
por: Eljaik, Jorhabib G., et al.
Publicado: (2018) -
Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers
por: Tsinganos, Konstantinos, et al.
Publicado: (2022) -
Bootstrapping of Parameterized Skills Through Hybrid Optimization in Task and Policy Spaces
por: Queißer, Jeffrey F., et al.
Publicado: (2018) -
Modeling Task Uncertainty for Safe Meta-Imitation Learning
por: Matsushima, Tatsuya, et al.
Publicado: (2020) -
Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects
por: Le Hir, Nicolas, et al.
Publicado: (2018)