Cargando…

Environmental Regulation Using Plasticoding for the Evolution of Robots

Evolutionary robot systems are usually affected by the properties of the environment indirectly through selection. In this paper, we present and investigate a system where the environment also has a direct effect—through regulation. We propose a novel robot encoding method where a genotype encodes m...

Descripción completa

Detalles Bibliográficos
Autores principales: Miras, Karine, Ferrante, Eliseo, Eiben, A. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806000/
https://www.ncbi.nlm.nih.gov/pubmed/33501274
http://dx.doi.org/10.3389/frobt.2020.00107
Descripción
Sumario:Evolutionary robot systems are usually affected by the properties of the environment indirectly through selection. In this paper, we present and investigate a system where the environment also has a direct effect—through regulation. We propose a novel robot encoding method where a genotype encodes multiple possible phenotypes, and the incarnation of a robot depends on the environmental conditions taking place in a determined moment of its life. This means that the morphology, controller, and behavior of a robot can change according to the environment. Importantly, this process of development can happen at any moment of a robot's lifetime, according to its experienced environmental stimuli. We provide an empirical proof-of-concept, and the analysis of the experimental results shows that environmental regulation improves adaptation (task performance) while leading to different evolved morphologies, controllers, and behavior.