Cargando…

Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation

Today, agricultural vehicles are available that can automatically perform tasks such as weed detection and spraying, mowing, and sowing while being steered automatically. However, for such systems to be fully autonomous and self-driven, not only their specific agricultural tasks must be automated. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Korthals, Timo, Kragh, Mikkel, Christiansen, Peter, Karstoft, Henrik, Jørgensen, Rasmus N., Rückert, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806069/
https://www.ncbi.nlm.nih.gov/pubmed/33500915
http://dx.doi.org/10.3389/frobt.2018.00028
_version_ 1783636449193623552
author Korthals, Timo
Kragh, Mikkel
Christiansen, Peter
Karstoft, Henrik
Jørgensen, Rasmus N.
Rückert, Ulrich
author_facet Korthals, Timo
Kragh, Mikkel
Christiansen, Peter
Karstoft, Henrik
Jørgensen, Rasmus N.
Rückert, Ulrich
author_sort Korthals, Timo
collection PubMed
description Today, agricultural vehicles are available that can automatically perform tasks such as weed detection and spraying, mowing, and sowing while being steered automatically. However, for such systems to be fully autonomous and self-driven, not only their specific agricultural tasks must be automated. An accurate and robust perception system automatically detecting and avoiding all obstacles must also be realized to ensure safety of humans, animals, and other surroundings. In this paper, we present a multi-modal obstacle and environment detection and recognition approach for process evaluation in agricultural fields. The proposed pipeline detects and maps static and dynamic obstacles globally, while providing process-relevant information along the traversed trajectory. Detection algorithms are introduced for a variety of sensor technologies, including range sensors (lidar and radar) and cameras (stereo and thermal). Detection information is mapped globally into semantical occupancy grid maps and fused across all sensors with late fusion, resulting in accurate traversability assessment and semantical mapping of process-relevant categories (e.g., crop, ground, and obstacles). Finally, a decoding step uses a Hidden Markov model to extract relevant process-specific parameters along the trajectory of the vehicle, thus informing a potential control system of unexpected structures in the planned path. The method is evaluated on a public dataset for multi-modal obstacle detection in agricultural fields. Results show that a combination of multiple sensor modalities increases detection performance and that different fusion strategies must be applied between algorithms detecting similar and dissimilar classes.
format Online
Article
Text
id pubmed-7806069
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-78060692021-01-25 Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation Korthals, Timo Kragh, Mikkel Christiansen, Peter Karstoft, Henrik Jørgensen, Rasmus N. Rückert, Ulrich Front Robot AI Robotics and AI Today, agricultural vehicles are available that can automatically perform tasks such as weed detection and spraying, mowing, and sowing while being steered automatically. However, for such systems to be fully autonomous and self-driven, not only their specific agricultural tasks must be automated. An accurate and robust perception system automatically detecting and avoiding all obstacles must also be realized to ensure safety of humans, animals, and other surroundings. In this paper, we present a multi-modal obstacle and environment detection and recognition approach for process evaluation in agricultural fields. The proposed pipeline detects and maps static and dynamic obstacles globally, while providing process-relevant information along the traversed trajectory. Detection algorithms are introduced for a variety of sensor technologies, including range sensors (lidar and radar) and cameras (stereo and thermal). Detection information is mapped globally into semantical occupancy grid maps and fused across all sensors with late fusion, resulting in accurate traversability assessment and semantical mapping of process-relevant categories (e.g., crop, ground, and obstacles). Finally, a decoding step uses a Hidden Markov model to extract relevant process-specific parameters along the trajectory of the vehicle, thus informing a potential control system of unexpected structures in the planned path. The method is evaluated on a public dataset for multi-modal obstacle detection in agricultural fields. Results show that a combination of multiple sensor modalities increases detection performance and that different fusion strategies must be applied between algorithms detecting similar and dissimilar classes. Frontiers Media S.A. 2018-03-27 /pmc/articles/PMC7806069/ /pubmed/33500915 http://dx.doi.org/10.3389/frobt.2018.00028 Text en Copyright © 2018 Korthals, Kragh, Christiansen, Karstoft, Jørgensen and Rückert. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Robotics and AI
Korthals, Timo
Kragh, Mikkel
Christiansen, Peter
Karstoft, Henrik
Jørgensen, Rasmus N.
Rückert, Ulrich
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
title Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
title_full Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
title_fullStr Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
title_full_unstemmed Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
title_short Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
title_sort multi-modal detection and mapping of static and dynamic obstacles in agriculture for process evaluation
topic Robotics and AI
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806069/
https://www.ncbi.nlm.nih.gov/pubmed/33500915
http://dx.doi.org/10.3389/frobt.2018.00028
work_keys_str_mv AT korthalstimo multimodaldetectionandmappingofstaticanddynamicobstaclesinagricultureforprocessevaluation
AT kraghmikkel multimodaldetectionandmappingofstaticanddynamicobstaclesinagricultureforprocessevaluation
AT christiansenpeter multimodaldetectionandmappingofstaticanddynamicobstaclesinagricultureforprocessevaluation
AT karstofthenrik multimodaldetectionandmappingofstaticanddynamicobstaclesinagricultureforprocessevaluation
AT jørgensenrasmusn multimodaldetectionandmappingofstaticanddynamicobstaclesinagricultureforprocessevaluation
AT ruckertulrich multimodaldetectionandmappingofstaticanddynamicobstaclesinagricultureforprocessevaluation