Cargando…
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
Today, agricultural vehicles are available that can automatically perform tasks such as weed detection and spraying, mowing, and sowing while being steered automatically. However, for such systems to be fully autonomous and self-driven, not only their specific agricultural tasks must be automated. A...
Autores principales: | Korthals, Timo, Kragh, Mikkel, Christiansen, Peter, Karstoft, Henrik, Jørgensen, Rasmus N., Rückert, Ulrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806069/ https://www.ncbi.nlm.nih.gov/pubmed/33500915 http://dx.doi.org/10.3389/frobt.2018.00028 |
Ejemplares similares
-
FieldSAFE: Dataset for Obstacle Detection in Agriculture
por: Kragh, Mikkel Fly, et al.
Publicado: (2017) -
Collaborative Multi-Robot Transportation in Obstacle-Cluttered Environments via Implicit Communication
por: Bechlioulis, Charalampos P., et al.
Publicado: (2018) -
Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots
por: Kelasidi, Eleni, et al.
Publicado: (2019) -
Learning to Avoid Obstacles With Minimal Intervention Control
por: Duan, Anqing, et al.
Publicado: (2020) -
Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks
por: Melnik, Andrew, et al.
Publicado: (2021)