Cargando…
STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib
BACKGROUND: Dysregulation of both mitochondrial biogenesis and mitophagy is critical to sustain oncogenic signaling pathways. However, the mechanism of mitophagy in promoting hepatocellular carcinoma (HCC) progression remains poorly understood. In this study, we investigated the clinical significanc...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807703/ https://www.ncbi.nlm.nih.gov/pubmed/33446239 http://dx.doi.org/10.1186/s13045-020-01029-3 |
_version_ | 1783636798893719552 |
---|---|
author | Zheng, Yahui Huang, Chong Lu, Lu Yu, Kangkang Zhao, Jing Chen, Mingquan Liu, Lu Sun, Qingfeng Lin, Zhifei Zheng, Jianming Chen, Jinhong Zhang, Jubo |
author_facet | Zheng, Yahui Huang, Chong Lu, Lu Yu, Kangkang Zhao, Jing Chen, Mingquan Liu, Lu Sun, Qingfeng Lin, Zhifei Zheng, Jianming Chen, Jinhong Zhang, Jubo |
author_sort | Zheng, Yahui |
collection | PubMed |
description | BACKGROUND: Dysregulation of both mitochondrial biogenesis and mitophagy is critical to sustain oncogenic signaling pathways. However, the mechanism of mitophagy in promoting hepatocellular carcinoma (HCC) progression remains poorly understood. In this study, we investigated the clinical significance and biological involvement of mitochondrial inner membrane protein STOML2 in HCC. METHODS: STOML2 was identified by gene expression profiles of HCC tissues and was measured in tissue microarray and cell lines. Gain/loss-of-function experiment was applied to study the biological function of STOML2 in HCC. Flow cytometry, Western blotting, laser confocal microscopy, transmission electron microscopy, and co-immunoprecipitation were used to detect and analyze mitophagy. ChIP and luciferase reporter assay were conducted to evaluate the relationship between STOML2 and HIF-1α. The sensitivity to lenvatinib was assessed in HCC both in vitro and in vivo. RESULTS: Increased expression of STOML2 was found in HCC compared with paired peritumoral tissues. It was more significant in HCC with metastasis and correlated with worse overall survival and higher probability of recurrence after hepatectomy. Upregulation of STOML2 accelerated HCC cells colony formation, migration and invasion. Mechanically, TCGA dataset-based analysis showed enrichment of autophagy-related pathways in STOML2 highly-expressed HCC. Next, STOML2 was demonstrated to interact and stabilize PINK1 under cellular stress, amplify PINK1-Parkin-mediated mitophagy and then promote HCC growth and metastasis. Most interestingly, HIF-1α was upregulated and transcriptionally increased STOML2 expression in HCC cells under the treatment of lenvatinib. Furthermore, higher sensitivity to lenvatinib was found in HCC cells when STOML2 was downregulated. Combination therapy with lenvatinib and mitophagy inhibitor hydroxychloroquine obtained best efficacy. CONCLUSIONS: Our findings suggested that STOML2 could amplify mitophagy through interacting and stabilizing PINK1, which promote HCC metastasis and modulate the response of HCC to lenvatinib. Combinations of pharmacologic inhibitors that concurrently block both angiogenesis and mitophagy may serve as an effective treatment for HCC. |
format | Online Article Text |
id | pubmed-7807703 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-78077032021-01-14 STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib Zheng, Yahui Huang, Chong Lu, Lu Yu, Kangkang Zhao, Jing Chen, Mingquan Liu, Lu Sun, Qingfeng Lin, Zhifei Zheng, Jianming Chen, Jinhong Zhang, Jubo J Hematol Oncol Research BACKGROUND: Dysregulation of both mitochondrial biogenesis and mitophagy is critical to sustain oncogenic signaling pathways. However, the mechanism of mitophagy in promoting hepatocellular carcinoma (HCC) progression remains poorly understood. In this study, we investigated the clinical significance and biological involvement of mitochondrial inner membrane protein STOML2 in HCC. METHODS: STOML2 was identified by gene expression profiles of HCC tissues and was measured in tissue microarray and cell lines. Gain/loss-of-function experiment was applied to study the biological function of STOML2 in HCC. Flow cytometry, Western blotting, laser confocal microscopy, transmission electron microscopy, and co-immunoprecipitation were used to detect and analyze mitophagy. ChIP and luciferase reporter assay were conducted to evaluate the relationship between STOML2 and HIF-1α. The sensitivity to lenvatinib was assessed in HCC both in vitro and in vivo. RESULTS: Increased expression of STOML2 was found in HCC compared with paired peritumoral tissues. It was more significant in HCC with metastasis and correlated with worse overall survival and higher probability of recurrence after hepatectomy. Upregulation of STOML2 accelerated HCC cells colony formation, migration and invasion. Mechanically, TCGA dataset-based analysis showed enrichment of autophagy-related pathways in STOML2 highly-expressed HCC. Next, STOML2 was demonstrated to interact and stabilize PINK1 under cellular stress, amplify PINK1-Parkin-mediated mitophagy and then promote HCC growth and metastasis. Most interestingly, HIF-1α was upregulated and transcriptionally increased STOML2 expression in HCC cells under the treatment of lenvatinib. Furthermore, higher sensitivity to lenvatinib was found in HCC cells when STOML2 was downregulated. Combination therapy with lenvatinib and mitophagy inhibitor hydroxychloroquine obtained best efficacy. CONCLUSIONS: Our findings suggested that STOML2 could amplify mitophagy through interacting and stabilizing PINK1, which promote HCC metastasis and modulate the response of HCC to lenvatinib. Combinations of pharmacologic inhibitors that concurrently block both angiogenesis and mitophagy may serve as an effective treatment for HCC. BioMed Central 2021-01-14 /pmc/articles/PMC7807703/ /pubmed/33446239 http://dx.doi.org/10.1186/s13045-020-01029-3 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Zheng, Yahui Huang, Chong Lu, Lu Yu, Kangkang Zhao, Jing Chen, Mingquan Liu, Lu Sun, Qingfeng Lin, Zhifei Zheng, Jianming Chen, Jinhong Zhang, Jubo STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib |
title | STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib |
title_full | STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib |
title_fullStr | STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib |
title_full_unstemmed | STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib |
title_short | STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib |
title_sort | stoml2 potentiates metastasis of hepatocellular carcinoma by promoting pink1-mediated mitophagy and regulates sensitivity to lenvatinib |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807703/ https://www.ncbi.nlm.nih.gov/pubmed/33446239 http://dx.doi.org/10.1186/s13045-020-01029-3 |
work_keys_str_mv | AT zhengyahui stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT huangchong stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT lulu stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT yukangkang stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT zhaojing stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT chenmingquan stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT liulu stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT sunqingfeng stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT linzhifei stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT zhengjianming stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT chenjinhong stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib AT zhangjubo stoml2potentiatesmetastasisofhepatocellularcarcinomabypromotingpink1mediatedmitophagyandregulatessensitivitytolenvatinib |