Cargando…
Current cancer driver variant predictors learn to recognize driver genes instead of functional variants
BACKGROUND: Identifying variants that drive tumor progression (driver variants) and distinguishing these from variants that are a byproduct of the uncontrolled cell growth in cancer (passenger variants) is a crucial step for understanding tumorigenesis and precision oncology. Various bioinformatics...
Autores principales: | Raimondi, Daniele, Passemiers, Antoine, Fariselli, Piero, Moreau, Yves |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807764/ https://www.ncbi.nlm.nih.gov/pubmed/33441128 http://dx.doi.org/10.1186/s12915-020-00930-0 |
Ejemplares similares
-
Fast and accurate inference of gene regulatory networks through robust precision matrix estimation
por: Passemiers, Antoine, et al.
Publicado: (2022) -
Large sample size and nonlinear sparse models outline epistatic effects in inflammatory bowel disease
por: Verplaetse, Nora, et al.
Publicado: (2023) -
Insight into the protein solubility driving forces with neural attention
por: Raimondi, Daniele, et al.
Publicado: (2020) -
From genotype to phenotype in Arabidopsis thaliana: in-silico genome interpretation predicts 288 phenotypes from sequencing data
por: Raimondi, Daniele, et al.
Publicado: (2021) -
Nonlinear data fusion over Entity–Relation graphs for Drug–Target Interaction prediction
por: Mazzone, Eugenio, et al.
Publicado: (2023)