Cargando…

Androgen receptor and its splice variant, AR-V7, differentially induce mRNA splicing in prostate cancer cells

Prostate cancer (PCa) is dependent on the androgen receptor (AR). Advanced PCa is treated with an androgen deprivation therapy-based regimen; tumors develop resistance, although they typically remain AR-dependent. Expression of constitutively active AR variants lacking the ligand-binding domain incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Rana, Manjul, Dong, Jianrong, Robertson, Matthew J., Basil, Paul, Coarfa, Cristian, Weigel, Nancy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809134/
https://www.ncbi.nlm.nih.gov/pubmed/33446905
http://dx.doi.org/10.1038/s41598-021-81164-0
Descripción
Sumario:Prostate cancer (PCa) is dependent on the androgen receptor (AR). Advanced PCa is treated with an androgen deprivation therapy-based regimen; tumors develop resistance, although they typically remain AR-dependent. Expression of constitutively active AR variants lacking the ligand-binding domain including the variant AR-V7 contributes to this resistance. AR and AR-V7, as transcription factors, regulate many of the same genes, but also have unique activities. In this study, the capacity of the two AR isoforms to regulate splicing was examined. RNA-seq data from models that endogenously express AR and express AR-V7 in response to doxycycline were used. Both AR isoforms induced multiple changes in splicing and many changes were isoform-specific. Analyses of two endogenous genes, PGAP2 and TPD52, were performed to examine differential splicing. A novel exon that appears to be a novel transcription start site was preferentially induced by AR-V7 in PGAP2 although it is induced to a lesser extent by AR. The previously described AR induced promoter 2 usage that results in a novel protein derived from TPD52 (PrLZ) was not induced by AR-V7. AR, but not AR-V7, bound to a site proximal to promoter 2, and induction was found to depend on FOXA1.