Cargando…
Icariin attenuates endothelial-mesenchymal transition via H19/miR-148b-3p/ELF5 in ox-LDL-stimulated HUVECs
Atherosclerosis is the main cause of cardio-cerebrovascular diseases. Endothelial-mesenchymal transition plays an important role in atherosclerosis. Icariin has a protective effect on atherosclerosis; however, the underlying mechanism remains unclear. In this study, we explored the molecular mechani...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809175/ https://www.ncbi.nlm.nih.gov/pubmed/33510936 http://dx.doi.org/10.1016/j.omtn.2020.11.021 |
Sumario: | Atherosclerosis is the main cause of cardio-cerebrovascular diseases. Endothelial-mesenchymal transition plays an important role in atherosclerosis. Icariin has a protective effect on atherosclerosis; however, the underlying mechanism remains unclear. In this study, we explored the molecular mechanism underlying the protective function of icariin in oxidized low-density lipoprotein-stimulated human umbilical vein endothelial cells. H19, a long non-coding RNA, was identified to be downregulated in the background of the oxidized low-density lipoprotein-induced endothelial-mesenchymal transition in human umbilical vein endothelial cells. Icariin upregulated H19 expression and inhibited the transformation of endothelial cells into interstitial cells. Overexpression of H19 affected endothelial-mesenchymal transition in oxidized low-density lipoprotein-stimulated human umbilical vein endothelial cells, whereas H19 knockdown reversed endothelial protective effects of icariin and reduced human umbilical vein endothelial cell migration. Knockdown of H19 significantly downregulated oxidized low-density lipoprotein-induced E74-like factor 5 and upregulated miR-148b-3p, which was reversed by icariin. Thus, icariin may play a protective role in atherosclerosis, and H19 may be a potential therapeutic target. |
---|