Cargando…
A negative feedback loop maintains optimal chemokine concentrations for directional cell migration
Chemoattractant gradients often guide migrating cells. To achieve the greatest directional signal over noise, such gradients should be maintained with concentrations around the chemoreceptor’s dissociation constant (K(d)) (1–6). Whether this is true in animals is unknown. Here, we investigate whethe...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809593/ https://www.ncbi.nlm.nih.gov/pubmed/32042179 http://dx.doi.org/10.1038/s41556-020-0465-4 |
_version_ | 1783637150372200448 |
---|---|
author | Lau, Stephanie Feitzinger, Anna Venkiteswaran, Gayatri Wang, John Lewellis, Stephen W. Koplinski, Chad A. Peterson, Francis C. Volkman, Brian F. Meier-Schellersheim, Martin Knaut, Holger |
author_facet | Lau, Stephanie Feitzinger, Anna Venkiteswaran, Gayatri Wang, John Lewellis, Stephen W. Koplinski, Chad A. Peterson, Francis C. Volkman, Brian F. Meier-Schellersheim, Martin Knaut, Holger |
author_sort | Lau, Stephanie |
collection | PubMed |
description | Chemoattractant gradients often guide migrating cells. To achieve the greatest directional signal over noise, such gradients should be maintained with concentrations around the chemoreceptor’s dissociation constant (K(d)) (1–6). Whether this is true in animals is unknown. Here, we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range for robust migration. We find that the Cxcl12/Sdf1 attractant gradient ranges from 0 to 12 nM and thus borders around the 3.4 nM K(d) of its receptor Cxcr4. When we increase the Cxcl12-Cxcr4 K(d), primordium migration is less directional. Furthermore, a negative feedback loop between Cxcl12 and its clearance receptor Ackr3/Cxcr7 regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of Ackr3b’s cytoplasmic tail also results in less directional primordium migration. Thus, the primordium relies on a close match between the Cxcl12 concentration and the Cxcl12-Cxcr4 K(d) for directed migration which it maintains by buffering the chemokine levels. Quantitative modeling confirms the plausibility of this mechanism. We anticipate that attractant concentration buffering is a general mechanism to ensure robust cell migration. |
format | Online Article Text |
id | pubmed-7809593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-78095932021-01-15 A negative feedback loop maintains optimal chemokine concentrations for directional cell migration Lau, Stephanie Feitzinger, Anna Venkiteswaran, Gayatri Wang, John Lewellis, Stephen W. Koplinski, Chad A. Peterson, Francis C. Volkman, Brian F. Meier-Schellersheim, Martin Knaut, Holger Nat Cell Biol Article Chemoattractant gradients often guide migrating cells. To achieve the greatest directional signal over noise, such gradients should be maintained with concentrations around the chemoreceptor’s dissociation constant (K(d)) (1–6). Whether this is true in animals is unknown. Here, we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range for robust migration. We find that the Cxcl12/Sdf1 attractant gradient ranges from 0 to 12 nM and thus borders around the 3.4 nM K(d) of its receptor Cxcr4. When we increase the Cxcl12-Cxcr4 K(d), primordium migration is less directional. Furthermore, a negative feedback loop between Cxcl12 and its clearance receptor Ackr3/Cxcr7 regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of Ackr3b’s cytoplasmic tail also results in less directional primordium migration. Thus, the primordium relies on a close match between the Cxcl12 concentration and the Cxcl12-Cxcr4 K(d) for directed migration which it maintains by buffering the chemokine levels. Quantitative modeling confirms the plausibility of this mechanism. We anticipate that attractant concentration buffering is a general mechanism to ensure robust cell migration. 2020-02-10 2020-03 /pmc/articles/PMC7809593/ /pubmed/32042179 http://dx.doi.org/10.1038/s41556-020-0465-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Lau, Stephanie Feitzinger, Anna Venkiteswaran, Gayatri Wang, John Lewellis, Stephen W. Koplinski, Chad A. Peterson, Francis C. Volkman, Brian F. Meier-Schellersheim, Martin Knaut, Holger A negative feedback loop maintains optimal chemokine concentrations for directional cell migration |
title | A negative feedback loop maintains optimal chemokine concentrations for directional cell migration |
title_full | A negative feedback loop maintains optimal chemokine concentrations for directional cell migration |
title_fullStr | A negative feedback loop maintains optimal chemokine concentrations for directional cell migration |
title_full_unstemmed | A negative feedback loop maintains optimal chemokine concentrations for directional cell migration |
title_short | A negative feedback loop maintains optimal chemokine concentrations for directional cell migration |
title_sort | negative feedback loop maintains optimal chemokine concentrations for directional cell migration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809593/ https://www.ncbi.nlm.nih.gov/pubmed/32042179 http://dx.doi.org/10.1038/s41556-020-0465-4 |
work_keys_str_mv | AT laustephanie anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT feitzingeranna anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT venkiteswarangayatri anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT wangjohn anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT lewellisstephenw anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT koplinskichada anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT petersonfrancisc anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT volkmanbrianf anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT meierschellersheimmartin anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT knautholger anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT laustephanie negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT feitzingeranna negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT venkiteswarangayatri negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT wangjohn negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT lewellisstephenw negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT koplinskichada negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT petersonfrancisc negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT volkmanbrianf negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT meierschellersheimmartin negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration AT knautholger negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration |