Cargando…

A negative feedback loop maintains optimal chemokine concentrations for directional cell migration

Chemoattractant gradients often guide migrating cells. To achieve the greatest directional signal over noise, such gradients should be maintained with concentrations around the chemoreceptor’s dissociation constant (K(d)) (1–6). Whether this is true in animals is unknown. Here, we investigate whethe...

Descripción completa

Detalles Bibliográficos
Autores principales: Lau, Stephanie, Feitzinger, Anna, Venkiteswaran, Gayatri, Wang, John, Lewellis, Stephen W., Koplinski, Chad A., Peterson, Francis C., Volkman, Brian F., Meier-Schellersheim, Martin, Knaut, Holger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809593/
https://www.ncbi.nlm.nih.gov/pubmed/32042179
http://dx.doi.org/10.1038/s41556-020-0465-4
_version_ 1783637150372200448
author Lau, Stephanie
Feitzinger, Anna
Venkiteswaran, Gayatri
Wang, John
Lewellis, Stephen W.
Koplinski, Chad A.
Peterson, Francis C.
Volkman, Brian F.
Meier-Schellersheim, Martin
Knaut, Holger
author_facet Lau, Stephanie
Feitzinger, Anna
Venkiteswaran, Gayatri
Wang, John
Lewellis, Stephen W.
Koplinski, Chad A.
Peterson, Francis C.
Volkman, Brian F.
Meier-Schellersheim, Martin
Knaut, Holger
author_sort Lau, Stephanie
collection PubMed
description Chemoattractant gradients often guide migrating cells. To achieve the greatest directional signal over noise, such gradients should be maintained with concentrations around the chemoreceptor’s dissociation constant (K(d)) (1–6). Whether this is true in animals is unknown. Here, we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range for robust migration. We find that the Cxcl12/Sdf1 attractant gradient ranges from 0 to 12 nM and thus borders around the 3.4 nM K(d) of its receptor Cxcr4. When we increase the Cxcl12-Cxcr4 K(d), primordium migration is less directional. Furthermore, a negative feedback loop between Cxcl12 and its clearance receptor Ackr3/Cxcr7 regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of Ackr3b’s cytoplasmic tail also results in less directional primordium migration. Thus, the primordium relies on a close match between the Cxcl12 concentration and the Cxcl12-Cxcr4 K(d) for directed migration which it maintains by buffering the chemokine levels. Quantitative modeling confirms the plausibility of this mechanism. We anticipate that attractant concentration buffering is a general mechanism to ensure robust cell migration.
format Online
Article
Text
id pubmed-7809593
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-78095932021-01-15 A negative feedback loop maintains optimal chemokine concentrations for directional cell migration Lau, Stephanie Feitzinger, Anna Venkiteswaran, Gayatri Wang, John Lewellis, Stephen W. Koplinski, Chad A. Peterson, Francis C. Volkman, Brian F. Meier-Schellersheim, Martin Knaut, Holger Nat Cell Biol Article Chemoattractant gradients often guide migrating cells. To achieve the greatest directional signal over noise, such gradients should be maintained with concentrations around the chemoreceptor’s dissociation constant (K(d)) (1–6). Whether this is true in animals is unknown. Here, we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range for robust migration. We find that the Cxcl12/Sdf1 attractant gradient ranges from 0 to 12 nM and thus borders around the 3.4 nM K(d) of its receptor Cxcr4. When we increase the Cxcl12-Cxcr4 K(d), primordium migration is less directional. Furthermore, a negative feedback loop between Cxcl12 and its clearance receptor Ackr3/Cxcr7 regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of Ackr3b’s cytoplasmic tail also results in less directional primordium migration. Thus, the primordium relies on a close match between the Cxcl12 concentration and the Cxcl12-Cxcr4 K(d) for directed migration which it maintains by buffering the chemokine levels. Quantitative modeling confirms the plausibility of this mechanism. We anticipate that attractant concentration buffering is a general mechanism to ensure robust cell migration. 2020-02-10 2020-03 /pmc/articles/PMC7809593/ /pubmed/32042179 http://dx.doi.org/10.1038/s41556-020-0465-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Lau, Stephanie
Feitzinger, Anna
Venkiteswaran, Gayatri
Wang, John
Lewellis, Stephen W.
Koplinski, Chad A.
Peterson, Francis C.
Volkman, Brian F.
Meier-Schellersheim, Martin
Knaut, Holger
A negative feedback loop maintains optimal chemokine concentrations for directional cell migration
title A negative feedback loop maintains optimal chemokine concentrations for directional cell migration
title_full A negative feedback loop maintains optimal chemokine concentrations for directional cell migration
title_fullStr A negative feedback loop maintains optimal chemokine concentrations for directional cell migration
title_full_unstemmed A negative feedback loop maintains optimal chemokine concentrations for directional cell migration
title_short A negative feedback loop maintains optimal chemokine concentrations for directional cell migration
title_sort negative feedback loop maintains optimal chemokine concentrations for directional cell migration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809593/
https://www.ncbi.nlm.nih.gov/pubmed/32042179
http://dx.doi.org/10.1038/s41556-020-0465-4
work_keys_str_mv AT laustephanie anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT feitzingeranna anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT venkiteswarangayatri anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT wangjohn anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT lewellisstephenw anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT koplinskichada anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT petersonfrancisc anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT volkmanbrianf anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT meierschellersheimmartin anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT knautholger anegativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT laustephanie negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT feitzingeranna negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT venkiteswarangayatri negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT wangjohn negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT lewellisstephenw negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT koplinskichada negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT petersonfrancisc negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT volkmanbrianf negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT meierschellersheimmartin negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration
AT knautholger negativefeedbackloopmaintainsoptimalchemokineconcentrationsfordirectionalcellmigration