Cargando…
Effective ribosomal RNA depletion for single-cell total RNA-seq by scDASH
A decade since its invention, single-cell RNA sequencing (scRNA-seq) has become a mainstay technology for profiling transcriptional heterogeneity in individual cells. Yet, most existing scRNA-seq methods capture only polyadenylated mRNA to avoid the cost of sequencing non-messenger transcripts, such...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812930/ https://www.ncbi.nlm.nih.gov/pubmed/33520469 http://dx.doi.org/10.7717/peerj.10717 |
Sumario: | A decade since its invention, single-cell RNA sequencing (scRNA-seq) has become a mainstay technology for profiling transcriptional heterogeneity in individual cells. Yet, most existing scRNA-seq methods capture only polyadenylated mRNA to avoid the cost of sequencing non-messenger transcripts, such as ribosomal RNA (rRNA), that are usually not of-interest. Hence, there are not very many protocols that enable single-cell analysis of total RNA. We adapted a method called DASH (Depletion of Abundant Sequences by Hybridisation) to make it suitable for depleting rRNA sequences from single-cell total RNA-seq libraries. Our analyses show that our single-cell DASH (scDASH) method can effectively deplete rRNAs from sequencing libraries with minimal off-target non-specificity. Importantly, as a result of depleting the rRNA, the rest of the transcriptome is significantly enriched for detection. |
---|