Cargando…

Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae

To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and dup...

Descripción completa

Detalles Bibliográficos
Autores principales: Fong, Kimberly K., Davis, Trisha N., Asbury, Charles L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814349/
https://www.ncbi.nlm.nih.gov/pubmed/33464308
http://dx.doi.org/10.1083/jcb.202007193
_version_ 1783638041427968000
author Fong, Kimberly K.
Davis, Trisha N.
Asbury, Charles L.
author_facet Fong, Kimberly K.
Davis, Trisha N.
Asbury, Charles L.
author_sort Fong, Kimberly K.
collection PubMed
description To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule–pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end–directed force generation will be needed to achieve antiparallel alignment.
format Online
Article
Text
id pubmed-7814349
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-78143492021-09-01 Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae Fong, Kimberly K. Davis, Trisha N. Asbury, Charles L. J Cell Biol Report To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule–pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end–directed force generation will be needed to achieve antiparallel alignment. Rockefeller University Press 2021-01-19 /pmc/articles/PMC7814349/ /pubmed/33464308 http://dx.doi.org/10.1083/jcb.202007193 Text en © 2021 Fong et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Report
Fong, Kimberly K.
Davis, Trisha N.
Asbury, Charles L.
Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae
title Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae
title_full Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae
title_fullStr Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae
title_full_unstemmed Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae
title_short Microtubule pivoting enables mitotic spindle assembly in S. cerevisiae
title_sort microtubule pivoting enables mitotic spindle assembly in s. cerevisiae
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814349/
https://www.ncbi.nlm.nih.gov/pubmed/33464308
http://dx.doi.org/10.1083/jcb.202007193
work_keys_str_mv AT fongkimberlyk microtubulepivotingenablesmitoticspindleassemblyinscerevisiae
AT davistrishan microtubulepivotingenablesmitoticspindleassemblyinscerevisiae
AT asburycharlesl microtubulepivotingenablesmitoticspindleassemblyinscerevisiae