Cargando…
Rosetta design with co-evolutionary information retains protein function
Computational protein design has the ambitious goal of crafting novel proteins that address challenges in biology and medicine. To overcome these challenges, the computational protein modeling suite Rosetta has been tailored to address various protein design tasks. Recently, statistical methods have...
Autores principales: | Schmitz, Samuel, Ertelt, Moritz, Merkl, Rainer, Meiler, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815116/ https://www.ncbi.nlm.nih.gov/pubmed/33465067 http://dx.doi.org/10.1371/journal.pcbi.1008568 |
Ejemplares similares
-
Rosetta:MSF: a modular framework for multi-state computational protein design
por: Löffler, Patrick, et al.
Publicado: (2017) -
The human antibody sequence space and structural design of the V, J regions, and CDRH3 with Rosetta
por: Schmitz, Samuel, et al.
Publicado: (2022) -
Assessing multiple score functions in Rosetta for drug discovery
por: Smith, Shannon T., et al.
Publicado: (2020) -
Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network
por: Nazet, Julian, et al.
Publicado: (2021) -
Docking cholesterol to integral membrane proteins with Rosetta
por: Marlow, Brennica, et al.
Publicado: (2023)