Cargando…
Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy
Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (e.g. sero...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819847/ https://www.ncbi.nlm.nih.gov/pubmed/32745213 http://dx.doi.org/10.1093/sleep/zsaa144 |
_version_ | 1783639078117310464 |
---|---|
author | Gurges, Patrick Liu, Hattie Horner, Richard L |
author_facet | Gurges, Patrick Liu, Hattie Horner, Richard L |
author_sort | Gurges, Patrick |
collection | PubMed |
description | Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K(+) leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p < 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p > 0.716) or responses to 5-HT (p > 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p > 0.05) between ChAT-Cre:TASK(f/f) mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep–wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy. |
format | Online Article Text |
id | pubmed-7819847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-78198472021-01-26 Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy Gurges, Patrick Liu, Hattie Horner, Richard L Sleep Basic Science of Sleep and Circadian Rhythms Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake–active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K(+) leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p < 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p > 0.716) or responses to 5-HT (p > 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p > 0.05) between ChAT-Cre:TASK(f/f) mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep–wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy. Oxford University Press 2020-08-03 /pmc/articles/PMC7819847/ /pubmed/32745213 http://dx.doi.org/10.1093/sleep/zsaa144 Text en © Sleep Research Society 2020. Published by Oxford University Press on behalf of the Sleep Research Society. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Basic Science of Sleep and Circadian Rhythms Gurges, Patrick Liu, Hattie Horner, Richard L Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy |
title | Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy |
title_full | Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy |
title_fullStr | Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy |
title_full_unstemmed | Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy |
title_short | Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy |
title_sort | modulation of task-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy |
topic | Basic Science of Sleep and Circadian Rhythms |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819847/ https://www.ncbi.nlm.nih.gov/pubmed/32745213 http://dx.doi.org/10.1093/sleep/zsaa144 |
work_keys_str_mv | AT gurgespatrick modulationoftask13channelsatthehypoglossalmotoneuronpoolandeffectsontonguemotoroutputandresponsestoexcitatoryinputsinvivoimplicationsforstrategiesforobstructivesleepapneapharmacotherapy AT liuhattie modulationoftask13channelsatthehypoglossalmotoneuronpoolandeffectsontonguemotoroutputandresponsestoexcitatoryinputsinvivoimplicationsforstrategiesforobstructivesleepapneapharmacotherapy AT hornerrichardl modulationoftask13channelsatthehypoglossalmotoneuronpoolandeffectsontonguemotoroutputandresponsestoexcitatoryinputsinvivoimplicationsforstrategiesforobstructivesleepapneapharmacotherapy |