Cargando…
Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models
It is well known that intake of probiotic brings health benefits. Lactic bacteria with probiotic potential have aroused the interest of the industry in developing food products that incorporate such benefits. However, incorporating probiotic bacteria into food is a challenge for the industry, given...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824258/ https://www.ncbi.nlm.nih.gov/pubmed/33374864 http://dx.doi.org/10.3390/foods10010025 |
_version_ | 1783640033641627648 |
---|---|
author | Monteiro, Shênia Santos da Silva, Wilton Pereira Monteiro, Shirley Santos Gomes, Josivanda Palmeira Pereira, Emmanuel Moreira de Melo Queiroz, Alexandre José de Figueirêdo, Rossana Maria Feitosa Rocha, Ana Paula Trindade Silva, Hanndson Araujo de Almeida, Leyllanne Renalle Batista de Sena, Mábia Ruana Silva de Lima, Antônio Gilson Barbosa |
author_facet | Monteiro, Shênia Santos da Silva, Wilton Pereira Monteiro, Shirley Santos Gomes, Josivanda Palmeira Pereira, Emmanuel Moreira de Melo Queiroz, Alexandre José de Figueirêdo, Rossana Maria Feitosa Rocha, Ana Paula Trindade Silva, Hanndson Araujo de Almeida, Leyllanne Renalle Batista de Sena, Mábia Ruana Silva de Lima, Antônio Gilson Barbosa |
author_sort | Monteiro, Shênia Santos |
collection | PubMed |
description | It is well known that intake of probiotic brings health benefits. Lactic bacteria with probiotic potential have aroused the interest of the industry in developing food products that incorporate such benefits. However, incorporating probiotic bacteria into food is a challenge for the industry, given the sensitivity of probiotic cultures to process conditions. Therefore, the objective of this study is to evaluate gelatin- and inulin-based filmogenic solutions as a potential vehicle for incorporating probiotics into food products and to model the fermentation kinetics. L. salivarius (Lactobacillus salivarius) growth in filmogenic solutions was analyzed under the influence of a variety gelatin concentrations (1.0–3.0%) and inulin concentrations (4.0–6.0%) and fermented under the effect of different temperatures (25–45 °C). A full 2(3) factorial plan with three replicates at the central point was used to optimize the process. The impacts of process conditions on cell development are fundamental to optimize the process and make it applicable by the industry. The present study showed that the optimal conditions for the development of probiotic cells in filmogenic solutions are a combination of 1.0% gelatin with 4.0% inulin and fermentation temperature of 45 °C. It was observed that the maximum cell growth occurred in an estimated time of about 4 h of fermentation. L. salivarius cell production and substrate consumption during the fermentation of the filmogenic solution were well simulated by a model proposed in this article, with coefficients of determination of 0.981 (cell growth) and 0.991 (substrate consumption). |
format | Online Article Text |
id | pubmed-7824258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78242582021-01-24 Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models Monteiro, Shênia Santos da Silva, Wilton Pereira Monteiro, Shirley Santos Gomes, Josivanda Palmeira Pereira, Emmanuel Moreira de Melo Queiroz, Alexandre José de Figueirêdo, Rossana Maria Feitosa Rocha, Ana Paula Trindade Silva, Hanndson Araujo de Almeida, Leyllanne Renalle Batista de Sena, Mábia Ruana Silva de Lima, Antônio Gilson Barbosa Foods Article It is well known that intake of probiotic brings health benefits. Lactic bacteria with probiotic potential have aroused the interest of the industry in developing food products that incorporate such benefits. However, incorporating probiotic bacteria into food is a challenge for the industry, given the sensitivity of probiotic cultures to process conditions. Therefore, the objective of this study is to evaluate gelatin- and inulin-based filmogenic solutions as a potential vehicle for incorporating probiotics into food products and to model the fermentation kinetics. L. salivarius (Lactobacillus salivarius) growth in filmogenic solutions was analyzed under the influence of a variety gelatin concentrations (1.0–3.0%) and inulin concentrations (4.0–6.0%) and fermented under the effect of different temperatures (25–45 °C). A full 2(3) factorial plan with three replicates at the central point was used to optimize the process. The impacts of process conditions on cell development are fundamental to optimize the process and make it applicable by the industry. The present study showed that the optimal conditions for the development of probiotic cells in filmogenic solutions are a combination of 1.0% gelatin with 4.0% inulin and fermentation temperature of 45 °C. It was observed that the maximum cell growth occurred in an estimated time of about 4 h of fermentation. L. salivarius cell production and substrate consumption during the fermentation of the filmogenic solution were well simulated by a model proposed in this article, with coefficients of determination of 0.981 (cell growth) and 0.991 (substrate consumption). MDPI 2020-12-23 /pmc/articles/PMC7824258/ /pubmed/33374864 http://dx.doi.org/10.3390/foods10010025 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Monteiro, Shênia Santos da Silva, Wilton Pereira Monteiro, Shirley Santos Gomes, Josivanda Palmeira Pereira, Emmanuel Moreira de Melo Queiroz, Alexandre José de Figueirêdo, Rossana Maria Feitosa Rocha, Ana Paula Trindade Silva, Hanndson Araujo de Almeida, Leyllanne Renalle Batista de Sena, Mábia Ruana Silva de Lima, Antônio Gilson Barbosa Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models |
title | Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models |
title_full | Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models |
title_fullStr | Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models |
title_full_unstemmed | Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models |
title_short | Optimization of the Effects of Different Temperatures and Compositions of Filmogenic Solution on Lactobacillus salivarius Using Predictive Mathematical Models |
title_sort | optimization of the effects of different temperatures and compositions of filmogenic solution on lactobacillus salivarius using predictive mathematical models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824258/ https://www.ncbi.nlm.nih.gov/pubmed/33374864 http://dx.doi.org/10.3390/foods10010025 |
work_keys_str_mv | AT monteirosheniasantos optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT dasilvawiltonpereira optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT monteiroshirleysantos optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT gomesjosivandapalmeira optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT pereiraemmanuelmoreira optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT demeloqueirozalexandrejose optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT defigueiredorossanamariafeitosa optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT rochaanapaulatrindade optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT silvahanndsonaraujo optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT dealmeidaleyllannerenallebatista optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT desenamabiaruanasilva optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels AT delimaantoniogilsonbarbosa optimizationoftheeffectsofdifferenttemperaturesandcompositionsoffilmogenicsolutiononlactobacillussalivariususingpredictivemathematicalmodels |