Cargando…

Methods to investigate intrathecal adaptive immunity in neurodegeneration

BACKGROUND: Cerebrospinal fluid (CSF) provides basic mechanical and immunological protection to the brain. Historically, analysis of CSF has focused on protein changes, yet recent studies have shed light on cellular alterations. Evidence now exists for involvement of intrathecal T cells in the patho...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Hamilton, Leventhal, Olivia, Channappa, Divya, Henderson, Victor W., Wyss-Coray, Tony, Lehallier, Benoit, Gate, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824942/
https://www.ncbi.nlm.nih.gov/pubmed/33482851
http://dx.doi.org/10.1186/s13024-021-00423-w
Descripción
Sumario:BACKGROUND: Cerebrospinal fluid (CSF) provides basic mechanical and immunological protection to the brain. Historically, analysis of CSF has focused on protein changes, yet recent studies have shed light on cellular alterations. Evidence now exists for involvement of intrathecal T cells in the pathobiology of neurodegenerative diseases. However, a standardized method for long-term preservation of CSF immune cells is lacking. Further, the functional role of CSF T cells and their cognate antigens in neurodegenerative diseases are largely unknown. RESULTS: We present a method for long-term cryopreservation of CSF immune cells for downstream single cell RNA and T cell receptor sequencing (scRNA-TCRseq) analysis. We observe preservation of CSF immune cells, consisting primarily of memory CD4(+) and CD8(+) T cells. We then utilize unbiased bioinformatics approaches to quantify and visualize TCR sequence similarity within and between disease groups. By this method, we identify clusters of disease-associated, antigen-specific TCRs from clonally expanded CSF T cells of patients with neurodegenerative diseases. CONCLUSIONS: Here, we provide a standardized approach for long-term storage of CSF immune cells. Additionally, we present unbiased bioinformatic approaches that will facilitate the discovery of target antigens of clonally expanded T cells in neurodegenerative diseases. These novel methods will help improve our understanding of adaptive immunity in the central nervous system. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13024-021-00423-w.