Cargando…
Weakly-Supervised Recommended Traversable Area Segmentation Using Automatically Labeled Images for Autonomous Driving in Pedestrian Environment with No Edges
Detection of traversable areas is essential to navigation of autonomous personal mobility systems in unknown pedestrian environments. However, traffic rules may recommend or require driving in specified areas, such as sidewalks, in environments where roadways and sidewalks coexist. Therefore, it is...
Autores principales: | Onozuka, Yuya, Matsumi, Ryosuke, Shino, Motoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827009/ https://www.ncbi.nlm.nih.gov/pubmed/33435464 http://dx.doi.org/10.3390/s21020437 |
Ejemplares similares
-
Weakly Supervised Crop Area Segmentation for an Autonomous Combine Harvester
por: Kim, Wan-Soo, et al.
Publicado: (2021) -
Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual Safety Cages
por: Kuutti, Sampo, et al.
Publicado: (2021) -
Autonomous robotic exploration with simultaneous environment and traversability models learning
por: Prágr, Miloš, et al.
Publicado: (2022) -
Self-Supervised Steering and Path Labeling for Autonomous Driving
por: Mihalea, Andrei, et al.
Publicado: (2023) -
Adopting the YOLOv4 Architecture for Low-Latency Multispectral Pedestrian Detection in Autonomous Driving
por: Roszyk, Kamil, et al.
Publicado: (2022)