Cargando…
Self-Supervised Point Set Local Descriptors for Point Cloud Registration
Descriptors play an important role in point cloud registration. The current state-of-the-art resorts to the high regression capability of deep learning. However, recent deep learning-based descriptors require different levels of annotation and selection of patches, which make the model hard to migra...
Autores principales: | Yuan, Yijun, Borrmann, Dorit, Hou, Jiawei, Ma, Yuexin, Nüchter, Andreas, Schwertfeger, Sören |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827147/ https://www.ncbi.nlm.nih.gov/pubmed/33445550 http://dx.doi.org/10.3390/s21020486 |
Ejemplares similares
-
Matching Algorithm for 3D Point Cloud Recognition and Registration Based on Multi-Statistics Histogram Descriptors
por: Li, Jinlong, et al.
Publicado: (2022) -
Self-Supervised Learning for Point-Cloud Classification by a Multigrid Autoencoder
por: Zhai, Ruifeng, et al.
Publicado: (2022) -
Point cloud registration of arrester based on scale-invariant points feature histogram
por: Zhu, Wen, et al.
Publicado: (2022) -
An approach for monitoring temperature on fruit surface by means of thermal point cloud
por: Tsoulias, Nikos, et al.
Publicado: (2022) -
Colored Point Cloud Registration by Depth Filtering
por: Choi, Ouk, et al.
Publicado: (2021)