Cargando…

A Novel Cyclic Pentadepsipeptide, N-Methylsansalvamide, Suppresses Angiogenic Responses and Exhibits Antitumor Efficacy against Bladder Cancer

SIMPLE SUMMARY: We found a novel cyclic pentadepsipeptide, N-methylsansalvamide (MSSV), and evaluated its anti-tumor action against bladder cancer using in vitro and in vivo model systems. Additionally, we report its anti-angiogenic responses both in vitro and in vivo. Moreover, acute toxicity test...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Jun-Hui, Park, Juhee, Park, Sung Lyea, Hwang, Byungdoo, Kim, Wun-Jae, Lee, Chan, Moon, Sung-Kwon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827157/
https://www.ncbi.nlm.nih.gov/pubmed/33430488
http://dx.doi.org/10.3390/cancers13020191
Descripción
Sumario:SIMPLE SUMMARY: We found a novel cyclic pentadepsipeptide, N-methylsansalvamide (MSSV), and evaluated its anti-tumor action against bladder cancer using in vitro and in vivo model systems. Additionally, we report its anti-angiogenic responses both in vitro and in vivo. Moreover, acute toxicity test and tissue staining for liver function revealed that orally administered MSSV (2000 mg/kg for 14 days) exerted no harmful effects as it did not cause animal death, undesirable weigh alteration, adverse clinical symptoms, and abnormal biochemical marker levels (AST, ALT). ABSTRACT: Here, we explored the anti-tumor efficacy of a cyclic pentadepsipeptide, N-methylsansalvamide (MSSV), in bladder cancer. MSSV inhibited the proliferation of both bladder cancer 5637 and T24 cells, which was attributed to the G1-phase cell cycle arrest, apoptosis induction, and alteration of mitogen-activated protein kinases (MAPKs) and protein kinase b (AKT) signaling pathways. Additionally, the treatment of bladder cancer cells with MSSV suppressed migratory and invasive potential via the transcription factor-mediated expression of matrix metalloproteinase 9 (MMP-9). MSSV abrogated vascular endothelial growth factor (VEGF)-induced angiogenic responses in vitro and in vivo. Furthermore, our result showed the potent anti-tumor efficacy of MSSV in a xenograft mouse model implanted with bladder cancer 5637 cells. Finally, acute toxicity test data obtained from blood biochemical test and liver staining indicated that the oral administration of MSSV at 2000 mg/kg caused no adverse cytotoxic effects. Our preclinical data described the potent anti-angiogenic and anti-tumor efficacy of MSSV and showed no signs of acute toxicity, thereby suggesting the putative potential of oral MSSV as a novel anti-tumor agent in bladder cancer treatment.