Cargando…

Inhibition of InsP3R with Xestospongin B Reduces Mitochondrial Respiration and Induces Selective Cell Death in T Cell Acute Lymphoblastic Leukemia Cells

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy whose chemoresistance and relapse persist as a problem despite significant advances in its chemotherapeutic treatments. Mitochondrial metabolism has emerged as an interesting therapeutic target given its essential...

Descripción completa

Detalles Bibliográficos
Autores principales: Cruz, Pablo, Ahumada-Castro, Ulises, Bustos, Galdo, Molgó, Jordi, Sauma, Daniela, Lovy, Alenka, Cárdenas, César
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827595/
https://www.ncbi.nlm.nih.gov/pubmed/33440859
http://dx.doi.org/10.3390/ijms22020651
Descripción
Sumario:T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy whose chemoresistance and relapse persist as a problem despite significant advances in its chemotherapeutic treatments. Mitochondrial metabolism has emerged as an interesting therapeutic target given its essential role in maintaining bioenergetic and metabolic homeostasis. T-ALL cells are characterized by high levels of mitochondrial respiration, making them suitable for this type of intervention. Mitochondrial function is sustained by a constitutive transfer of calcium from the endoplasmic reticulum to mitochondria through the inositol 1,4,5-trisphosphate receptor (InsP3R), making T-ALL cells vulnerable to its inhibition. Here, we determine the bioenergetic profile of the T-ALL cell lines CCRF-CEM and Jurkat and evaluate their sensitivity to InsP3R inhibition with the specific inhibitor, Xestospongin B (XeB). Our results show that T-ALL cell lines exhibit higher mitochondrial respiration than non-malignant cells, which is blunted by the inhibition of the InsP3R. Prolonged treatment with XeB causes T-ALL cell death without affecting the normal counterpart. Moreover, the combination of XeB and glucocorticoids significantly enhanced cell death in the CCRF-CEM cells. The inhibition of InsP3R with XeB rises as a potential therapeutic alternative for the treatment of T-ALL.