Cargando…
Influence of Pre-Harvest Gibberellic Acid and Post-Harvest 1-methyl Cyclopropane Treatments on Phenolic Compounds, Vitamin C and Organic Acid Contents during the Shelf Life of Strawberry Fruits
In recent years, significant portions of the fresh fruits and vegetables produced worldwide have been decaying before reaching the consumer because of insufficient preservation after harvest. In this direction, we carried the study out to investigate the effect of gibberellic acid (GA(3)) and 1-meth...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827795/ https://www.ncbi.nlm.nih.gov/pubmed/33435551 http://dx.doi.org/10.3390/plants10010121 |
Sumario: | In recent years, significant portions of the fresh fruits and vegetables produced worldwide have been decaying before reaching the consumer because of insufficient preservation after harvest. In this direction, we carried the study out to investigate the effect of gibberellic acid (GA(3)) and 1-methyl cyclopropane (1-MCP) applications on phenolic compounds and organic acid contents of the strawberry fruits (cv. Albion) during shelf-life. Gibberellic acid treatments, which prepared in two different concentrations (50 and 100 ppm), were performed by spraying the leaves before harvest. 1-methyl cyclopropane applied after harvest. The results of the study showed a greater decrease in organic acids (except oxalic and succinic acid) in Gibberellic acid-applied fruits during shelf-life. Citric acid was recorded as the most abundant organic acid in the control group. In phenolic compounds, gallic acid (15.22 mg 100 g(−1)) and ellagic acid (9.38 mg 100 g(−1)) were recorded as the highest phenolic compounds on the third day. 1-MCP and GA(3) (50 ppm) + 1-MCP treatment reduced the breakdown of vitamin C during the shelf-life of strawberry fruits compared to the control group. As a result, phenolic compounds, vitamin C, and organic acids decreased during the shelf-life, and 1-MCP applications slowed down the breakdown of these compounds. |
---|