Cargando…
Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models
As the number of single‐cell transcriptomics datasets grows, the natural next step is to integrate the accumulating data to achieve a common ontology of cell types and states. However, it is not straightforward to compare gene expression levels across datasets and to automatically assign cell type l...
Autores principales: | Xu, Chenling, Lopez, Romain, Mehlman, Edouard, Regier, Jeffrey, Jordan, Michael I, Yosef, Nir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829634/ https://www.ncbi.nlm.nih.gov/pubmed/33491336 http://dx.doi.org/10.15252/msb.20209620 |
Ejemplares similares
-
Deep Generative Modeling for Single-cell Transcriptomics
por: Lopez, Romain, et al.
Publicado: (2018) -
An empirical Bayes method for differential expression analysis of single cells with deep generative models
por: Boyeau, Pierre, et al.
Publicado: (2023) -
Joint probabilistic modeling of single-cell multi-omic data with totalVI
por: Gayoso, Adam, et al.
Publicado: (2021) -
Enhancing scientific discoveries in molecular biology with deep generative models
por: Lopez, Romain, et al.
Publicado: (2020) -
Probabilistic behavior of harmonic functions
por: Bañuelos, Rodrigo, et al.
Publicado: (1999)