Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid)
In this work, calcium oxalate (CaOx) precursors were stabilized by poly(acrylic acid) (PAA) as an additive under in vitro crystallization assays involving the formation of pre-nucleation clusters of CaOx via a non-classical crystallization (NCC) pathway. The in vitro crystallization of CaOx was carr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829898/ https://www.ncbi.nlm.nih.gov/pubmed/33477452 http://dx.doi.org/10.3390/nano11010235 |
_version_ | 1783641278100013056 |
---|---|
author | Díaz-Soler, Felipe Rodriguez-Navarro, Carlos Ruiz-Agudo, Encarnación Neira-Carrillo, Andrónico |
author_facet | Díaz-Soler, Felipe Rodriguez-Navarro, Carlos Ruiz-Agudo, Encarnación Neira-Carrillo, Andrónico |
author_sort | Díaz-Soler, Felipe |
collection | PubMed |
description | In this work, calcium oxalate (CaOx) precursors were stabilized by poly(acrylic acid) (PAA) as an additive under in vitro crystallization assays involving the formation of pre-nucleation clusters of CaOx via a non-classical crystallization (NCC) pathway. The in vitro crystallization of CaOx was carried out in the presence of 10, 50 and 100 mg/L PAA by using automatic calcium potentiometric titration experiments at a constant pH of 6.7 at 20 °C. The results confirmed the successful stabilization of amorphous calcium oxalate II and III (ACOII and ACO III) nanoparticles formed after PNC in the presence of PAA and suggest the participation and stabilization of polymer-induced liquid-precursor (PILP) in the presence of PAA. We demonstrated that PAA stabilizes CaOx precursors with size in the range of 20–400 nm. PAA additive plays a key role in the in vitro crystallization of CaOx stabilizing multi-ion complexes in the pre-nucleation stage, thereby delaying the nucleation of ACO nanoparticles. Indeed, PAA additive favors the formation of more hydrated and soluble phase of ACO nanoparticles that are bound by electrostatic interactions to carboxylic acid groups of PAA during the post-nucleation stage. These findings may help to a better understanding of the pathological mineralization resulting in urolithiasis in mammals. |
format | Online Article Text |
id | pubmed-7829898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78298982021-01-26 Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid) Díaz-Soler, Felipe Rodriguez-Navarro, Carlos Ruiz-Agudo, Encarnación Neira-Carrillo, Andrónico Nanomaterials (Basel) Article In this work, calcium oxalate (CaOx) precursors were stabilized by poly(acrylic acid) (PAA) as an additive under in vitro crystallization assays involving the formation of pre-nucleation clusters of CaOx via a non-classical crystallization (NCC) pathway. The in vitro crystallization of CaOx was carried out in the presence of 10, 50 and 100 mg/L PAA by using automatic calcium potentiometric titration experiments at a constant pH of 6.7 at 20 °C. The results confirmed the successful stabilization of amorphous calcium oxalate II and III (ACOII and ACO III) nanoparticles formed after PNC in the presence of PAA and suggest the participation and stabilization of polymer-induced liquid-precursor (PILP) in the presence of PAA. We demonstrated that PAA stabilizes CaOx precursors with size in the range of 20–400 nm. PAA additive plays a key role in the in vitro crystallization of CaOx stabilizing multi-ion complexes in the pre-nucleation stage, thereby delaying the nucleation of ACO nanoparticles. Indeed, PAA additive favors the formation of more hydrated and soluble phase of ACO nanoparticles that are bound by electrostatic interactions to carboxylic acid groups of PAA during the post-nucleation stage. These findings may help to a better understanding of the pathological mineralization resulting in urolithiasis in mammals. MDPI 2021-01-18 /pmc/articles/PMC7829898/ /pubmed/33477452 http://dx.doi.org/10.3390/nano11010235 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Díaz-Soler, Felipe Rodriguez-Navarro, Carlos Ruiz-Agudo, Encarnación Neira-Carrillo, Andrónico Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid) |
title | Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid) |
title_full | Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid) |
title_fullStr | Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid) |
title_full_unstemmed | Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid) |
title_short | Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid) |
title_sort | stabilization of calcium oxalate precursors during the pre- and post-nucleation stages with poly(acrylic acid) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829898/ https://www.ncbi.nlm.nih.gov/pubmed/33477452 http://dx.doi.org/10.3390/nano11010235 |
work_keys_str_mv | AT diazsolerfelipe stabilizationofcalciumoxalateprecursorsduringthepreandpostnucleationstageswithpolyacrylicacid AT rodrigueznavarrocarlos stabilizationofcalciumoxalateprecursorsduringthepreandpostnucleationstageswithpolyacrylicacid AT ruizagudoencarnacion stabilizationofcalciumoxalateprecursorsduringthepreandpostnucleationstageswithpolyacrylicacid AT neiracarrilloandronico stabilizationofcalciumoxalateprecursorsduringthepreandpostnucleationstageswithpolyacrylicacid |