Cargando…

Lactate Limits T Cell Proliferation via the NAD(H) Redox State

Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleot...

Descripción completa

Detalles Bibliográficos
Autores principales: Quinn, William J., Jiao, Jing, TeSlaa, Tara, Stadanlick, Jason, Wang, Zhonglin, Wang, Liqing, Akimova, Tatiana, Angelin, Alessia, Schäfer, Patrick M., Cully, Michelle D., Perry, Caroline, Kopinski, Piotr K., Guo, Lili, Blair, Ian A., Ghanem, Louis R., Leibowitz, Michael S., Hancock, Wayne W., Moon, Edmund K., Levine, Matthew H., Eruslanov, Evgeniy B., Wallace, Douglas C., Baur, Joseph A., Beier, Ulf H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830708/
https://www.ncbi.nlm.nih.gov/pubmed/33326785
http://dx.doi.org/10.1016/j.celrep.2020.108500
_version_ 1783641481325576192
author Quinn, William J.
Jiao, Jing
TeSlaa, Tara
Stadanlick, Jason
Wang, Zhonglin
Wang, Liqing
Akimova, Tatiana
Angelin, Alessia
Schäfer, Patrick M.
Cully, Michelle D.
Perry, Caroline
Kopinski, Piotr K.
Guo, Lili
Blair, Ian A.
Ghanem, Louis R.
Leibowitz, Michael S.
Hancock, Wayne W.
Moon, Edmund K.
Levine, Matthew H.
Eruslanov, Evgeniy B.
Wallace, Douglas C.
Baur, Joseph A.
Beier, Ulf H.
author_facet Quinn, William J.
Jiao, Jing
TeSlaa, Tara
Stadanlick, Jason
Wang, Zhonglin
Wang, Liqing
Akimova, Tatiana
Angelin, Alessia
Schäfer, Patrick M.
Cully, Michelle D.
Perry, Caroline
Kopinski, Piotr K.
Guo, Lili
Blair, Ian A.
Ghanem, Louis R.
Leibowitz, Michael S.
Hancock, Wayne W.
Moon, Edmund K.
Levine, Matthew H.
Eruslanov, Evgeniy B.
Wallace, Douglas C.
Baur, Joseph A.
Beier, Ulf H.
author_sort Quinn, William J.
collection PubMed
description Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD(+)), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD(+)-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression.
format Online
Article
Text
id pubmed-7830708
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-78307082021-01-25 Lactate Limits T Cell Proliferation via the NAD(H) Redox State Quinn, William J. Jiao, Jing TeSlaa, Tara Stadanlick, Jason Wang, Zhonglin Wang, Liqing Akimova, Tatiana Angelin, Alessia Schäfer, Patrick M. Cully, Michelle D. Perry, Caroline Kopinski, Piotr K. Guo, Lili Blair, Ian A. Ghanem, Louis R. Leibowitz, Michael S. Hancock, Wayne W. Moon, Edmund K. Levine, Matthew H. Eruslanov, Evgeniy B. Wallace, Douglas C. Baur, Joseph A. Beier, Ulf H. Cell Rep Article Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD(+)), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD(+)-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression. 2020-12-15 /pmc/articles/PMC7830708/ /pubmed/33326785 http://dx.doi.org/10.1016/j.celrep.2020.108500 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Quinn, William J.
Jiao, Jing
TeSlaa, Tara
Stadanlick, Jason
Wang, Zhonglin
Wang, Liqing
Akimova, Tatiana
Angelin, Alessia
Schäfer, Patrick M.
Cully, Michelle D.
Perry, Caroline
Kopinski, Piotr K.
Guo, Lili
Blair, Ian A.
Ghanem, Louis R.
Leibowitz, Michael S.
Hancock, Wayne W.
Moon, Edmund K.
Levine, Matthew H.
Eruslanov, Evgeniy B.
Wallace, Douglas C.
Baur, Joseph A.
Beier, Ulf H.
Lactate Limits T Cell Proliferation via the NAD(H) Redox State
title Lactate Limits T Cell Proliferation via the NAD(H) Redox State
title_full Lactate Limits T Cell Proliferation via the NAD(H) Redox State
title_fullStr Lactate Limits T Cell Proliferation via the NAD(H) Redox State
title_full_unstemmed Lactate Limits T Cell Proliferation via the NAD(H) Redox State
title_short Lactate Limits T Cell Proliferation via the NAD(H) Redox State
title_sort lactate limits t cell proliferation via the nad(h) redox state
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830708/
https://www.ncbi.nlm.nih.gov/pubmed/33326785
http://dx.doi.org/10.1016/j.celrep.2020.108500
work_keys_str_mv AT quinnwilliamj lactatelimitstcellproliferationviathenadhredoxstate
AT jiaojing lactatelimitstcellproliferationviathenadhredoxstate
AT teslaatara lactatelimitstcellproliferationviathenadhredoxstate
AT stadanlickjason lactatelimitstcellproliferationviathenadhredoxstate
AT wangzhonglin lactatelimitstcellproliferationviathenadhredoxstate
AT wangliqing lactatelimitstcellproliferationviathenadhredoxstate
AT akimovatatiana lactatelimitstcellproliferationviathenadhredoxstate
AT angelinalessia lactatelimitstcellproliferationviathenadhredoxstate
AT schaferpatrickm lactatelimitstcellproliferationviathenadhredoxstate
AT cullymichelled lactatelimitstcellproliferationviathenadhredoxstate
AT perrycaroline lactatelimitstcellproliferationviathenadhredoxstate
AT kopinskipiotrk lactatelimitstcellproliferationviathenadhredoxstate
AT guolili lactatelimitstcellproliferationviathenadhredoxstate
AT blairiana lactatelimitstcellproliferationviathenadhredoxstate
AT ghanemlouisr lactatelimitstcellproliferationviathenadhredoxstate
AT leibowitzmichaels lactatelimitstcellproliferationviathenadhredoxstate
AT hancockwaynew lactatelimitstcellproliferationviathenadhredoxstate
AT moonedmundk lactatelimitstcellproliferationviathenadhredoxstate
AT levinematthewh lactatelimitstcellproliferationviathenadhredoxstate
AT eruslanovevgeniyb lactatelimitstcellproliferationviathenadhredoxstate
AT wallacedouglasc lactatelimitstcellproliferationviathenadhredoxstate
AT baurjosepha lactatelimitstcellproliferationviathenadhredoxstate
AT beierulfh lactatelimitstcellproliferationviathenadhredoxstate