Cargando…
Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进
In 2020, the COVID-19 pandemic spreads rapidly around the world. To accurately predict the number of daily new cases in each country, Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic (GPCP). In this article, the authors use the ensemble empirical mode decompos...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831456/ http://dx.doi.org/10.1016/j.aosl.2020.100019 |