Cargando…

Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进

In 2020, the COVID-19 pandemic spreads rapidly around the world. To accurately predict the number of daily new cases in each country, Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic (GPCP). In this article, the authors use the ensemble empirical mode decompos...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chuwei, Huang, Jianping, Ji, Fei, Zhang, Li, Liu, Xiaoyue, Wei, Yun, Lian, Xinbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831456/
http://dx.doi.org/10.1016/j.aosl.2020.100019
_version_ 1783641626028015616
author Liu, Chuwei
Huang, Jianping
Ji, Fei
Zhang, Li
Liu, Xiaoyue
Wei, Yun
Lian, Xinbo
author_facet Liu, Chuwei
Huang, Jianping
Ji, Fei
Zhang, Li
Liu, Xiaoyue
Wei, Yun
Lian, Xinbo
author_sort Liu, Chuwei
collection PubMed
description In 2020, the COVID-19 pandemic spreads rapidly around the world. To accurately predict the number of daily new cases in each country, Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic (GPCP). In this article, the authors use the ensemble empirical mode decomposition (EEMD) model and autoregressive moving average (ARMA) model to improve the prediction results of GPCP. In addition, the authors also conduct direct predictions for those countries with a small number of confirmed cases or are in the early stage of the disease, whose development trends of the pandemic do not fully comply with the law of infectious diseases and cannot be predicted by the GPCP model. Judging from the results, the absolute values of the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction trends are closer to the real situations through the method mentioned above to revise the prediction results out of GPCP. For countries such as El Salvador with a small number of cases, the absolute values of the relative errors of prediction become smaller. Therefore, this article concludes that this method is more effective for improving prediction results and direct prediction. 摘要 2020年, 新型冠状病毒肺炎 (COVID-19) 在世界范围内迅速传播.为准确预测各国每日新增发病人数, 兰州大学开发了 COVID-19 流行病全球预测系统 (GPCP). 在本文的研究中, 我们使用集合经验模态分解 (EEMD) 模型和自回归-移动平均 (ARMA) 模型对 GPCP 的预测结果进行改进, 并对发病人数较少或处于发病初期, 不完全符合传染病规律, GPCP 模型无法预测的国家进行直接预测.从结果来看, 使用该方法修正预测结果, 古巴等国家预测误差均大幅下降, 且预测趋势更接近真实情况.对于萨尔瓦多等发病人数较少的国家直接进行预测, 相对误差较小, 预测结果较为准确.该方法对于改进预测结果和直接预测均较为有效.
format Online
Article
Text
id pubmed-7831456
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
record_format MEDLINE/PubMed
spelling pubmed-78314562021-01-26 Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进 Liu, Chuwei Huang, Jianping Ji, Fei Zhang, Li Liu, Xiaoyue Wei, Yun Lian, Xinbo Atmospheric and Oceanic Science Letters Article In 2020, the COVID-19 pandemic spreads rapidly around the world. To accurately predict the number of daily new cases in each country, Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic (GPCP). In this article, the authors use the ensemble empirical mode decomposition (EEMD) model and autoregressive moving average (ARMA) model to improve the prediction results of GPCP. In addition, the authors also conduct direct predictions for those countries with a small number of confirmed cases or are in the early stage of the disease, whose development trends of the pandemic do not fully comply with the law of infectious diseases and cannot be predicted by the GPCP model. Judging from the results, the absolute values of the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction trends are closer to the real situations through the method mentioned above to revise the prediction results out of GPCP. For countries such as El Salvador with a small number of cases, the absolute values of the relative errors of prediction become smaller. Therefore, this article concludes that this method is more effective for improving prediction results and direct prediction. 摘要 2020年, 新型冠状病毒肺炎 (COVID-19) 在世界范围内迅速传播.为准确预测各国每日新增发病人数, 兰州大学开发了 COVID-19 流行病全球预测系统 (GPCP). 在本文的研究中, 我们使用集合经验模态分解 (EEMD) 模型和自回归-移动平均 (ARMA) 模型对 GPCP 的预测结果进行改进, 并对发病人数较少或处于发病初期, 不完全符合传染病规律, GPCP 模型无法预测的国家进行直接预测.从结果来看, 使用该方法修正预测结果, 古巴等国家预测误差均大幅下降, 且预测趋势更接近真实情况.对于萨尔瓦多等发病人数较少的国家直接进行预测, 相对误差较小, 预测结果较为准确.该方法对于改进预测结果和直接预测均较为有效. The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2021-07 2020-12-14 /pmc/articles/PMC7831456/ http://dx.doi.org/10.1016/j.aosl.2020.100019 Text en © 2021 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Liu, Chuwei
Huang, Jianping
Ji, Fei
Zhang, Li
Liu, Xiaoyue
Wei, Yun
Lian, Xinbo
Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进
title Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进
title_full Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进
title_fullStr Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进
title_full_unstemmed Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进
title_short Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 COVID-19 流行病全球预测系统预测结果改进
title_sort improvement of the global prediction system of the covid-19 pandemic based on the ensemble empirical mode decomposition (eemd) and autoregressive moving average (arma) model in a hybrid approach 基于集合经验模态分解和自回归-移动平均模型的 covid-19 流行病全球预测系统预测结果改进
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831456/
http://dx.doi.org/10.1016/j.aosl.2020.100019
work_keys_str_mv AT liuchuwei improvementoftheglobalpredictionsystemofthecovid19pandemicbasedontheensembleempiricalmodedecompositioneemdandautoregressivemovingaveragearmamodelinahybridapproachjīyújíhéjīngyànmótàifēnjiěhézìhuíguīyídòngpíngjūnmóxíngdecovid19liúxíng
AT huangjianping improvementoftheglobalpredictionsystemofthecovid19pandemicbasedontheensembleempiricalmodedecompositioneemdandautoregressivemovingaveragearmamodelinahybridapproachjīyújíhéjīngyànmótàifēnjiěhézìhuíguīyídòngpíngjūnmóxíngdecovid19liúxíng
AT jifei improvementoftheglobalpredictionsystemofthecovid19pandemicbasedontheensembleempiricalmodedecompositioneemdandautoregressivemovingaveragearmamodelinahybridapproachjīyújíhéjīngyànmótàifēnjiěhézìhuíguīyídòngpíngjūnmóxíngdecovid19liúxíng
AT zhangli improvementoftheglobalpredictionsystemofthecovid19pandemicbasedontheensembleempiricalmodedecompositioneemdandautoregressivemovingaveragearmamodelinahybridapproachjīyújíhéjīngyànmótàifēnjiěhézìhuíguīyídòngpíngjūnmóxíngdecovid19liúxíng
AT liuxiaoyue improvementoftheglobalpredictionsystemofthecovid19pandemicbasedontheensembleempiricalmodedecompositioneemdandautoregressivemovingaveragearmamodelinahybridapproachjīyújíhéjīngyànmótàifēnjiěhézìhuíguīyídòngpíngjūnmóxíngdecovid19liúxíng
AT weiyun improvementoftheglobalpredictionsystemofthecovid19pandemicbasedontheensembleempiricalmodedecompositioneemdandautoregressivemovingaveragearmamodelinahybridapproachjīyújíhéjīngyànmótàifēnjiěhézìhuíguīyídòngpíngjūnmóxíngdecovid19liúxíng
AT lianxinbo improvementoftheglobalpredictionsystemofthecovid19pandemicbasedontheensembleempiricalmodedecompositioneemdandautoregressivemovingaveragearmamodelinahybridapproachjīyújíhéjīngyànmótàifēnjiěhézìhuíguīyídòngpíngjūnmóxíngdecovid19liúxíng