Cargando…
Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis
EsxA, secreted by the ESAT-6 secretion system 1 (ESX-1) secretion system, is considered the major Mycobacterium tuberculosis (Mtb) virulence determinant. However, the roles of the individual ESX-1 substrates, such as EspC, remain unclear due to their interdependency for secretion with EsxA. Here, we...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832037/ https://www.ncbi.nlm.nih.gov/pubmed/33290182 http://dx.doi.org/10.1080/22221751.2020.1861913 |
_version_ | 1783641748404174848 |
---|---|
author | Guo, Qinglong Bi, Jing Wang, Honghai Zhang, Xuelian |
author_facet | Guo, Qinglong Bi, Jing Wang, Honghai Zhang, Xuelian |
author_sort | Guo, Qinglong |
collection | PubMed |
description | EsxA, secreted by the ESAT-6 secretion system 1 (ESX-1) secretion system, is considered the major Mycobacterium tuberculosis (Mtb) virulence determinant. However, the roles of the individual ESX-1 substrates, such as EspC, remain unclear due to their interdependency for secretion with EsxA. Here, we validated that EspC triggered ER stress-mediated apoptosis in macrophages. The EspC-mediated ER stress was involved in pro-inflammatory cytokines generation, intracellular Ca(2+) release, and reactive oxygen species accumulation. Mitochondrial transmembrane potential dissipation and mitochondrial outer membrane permeabilization occurred in EspC-treated macrophages, causing apoptosis. Furthermore, ER stress-mediated apoptosis was effectively induced in EspC-overexpressing Mycobacterium smegmatis-infected macrophages and mice. EspC overexpression caused a significant increase in bacterial survival in the macrophages, spleens, and lungs, and accelerated mouse death was observed. Moreover, the increased viability of bacteria in the macrophages was significantly reduced by pretreatment with the apoptosis inhibitor. Overall, our results revealed that EspC is an essential ESX-1 protein for Mtb–host interactions and EspC-induced ER stress-mediated apoptosis may be employed by Mtb to establish and spread infection. Given the critical roles of the ESX systems in Mtb pathogenesis and immunity, our findings offer new perspectives on the complex host-pathogen interactions and mechanisms underlying ESX-1-mediated pathogenesis. |
format | Online Article Text |
id | pubmed-7832037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-78320372021-02-02 Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis Guo, Qinglong Bi, Jing Wang, Honghai Zhang, Xuelian Emerg Microbes Infect Tuberculosis EsxA, secreted by the ESAT-6 secretion system 1 (ESX-1) secretion system, is considered the major Mycobacterium tuberculosis (Mtb) virulence determinant. However, the roles of the individual ESX-1 substrates, such as EspC, remain unclear due to their interdependency for secretion with EsxA. Here, we validated that EspC triggered ER stress-mediated apoptosis in macrophages. The EspC-mediated ER stress was involved in pro-inflammatory cytokines generation, intracellular Ca(2+) release, and reactive oxygen species accumulation. Mitochondrial transmembrane potential dissipation and mitochondrial outer membrane permeabilization occurred in EspC-treated macrophages, causing apoptosis. Furthermore, ER stress-mediated apoptosis was effectively induced in EspC-overexpressing Mycobacterium smegmatis-infected macrophages and mice. EspC overexpression caused a significant increase in bacterial survival in the macrophages, spleens, and lungs, and accelerated mouse death was observed. Moreover, the increased viability of bacteria in the macrophages was significantly reduced by pretreatment with the apoptosis inhibitor. Overall, our results revealed that EspC is an essential ESX-1 protein for Mtb–host interactions and EspC-induced ER stress-mediated apoptosis may be employed by Mtb to establish and spread infection. Given the critical roles of the ESX systems in Mtb pathogenesis and immunity, our findings offer new perspectives on the complex host-pathogen interactions and mechanisms underlying ESX-1-mediated pathogenesis. Taylor & Francis 2021-01-17 /pmc/articles/PMC7832037/ /pubmed/33290182 http://dx.doi.org/10.1080/22221751.2020.1861913 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Tuberculosis Guo, Qinglong Bi, Jing Wang, Honghai Zhang, Xuelian Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis |
title | Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis |
title_full | Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis |
title_fullStr | Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis |
title_full_unstemmed | Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis |
title_short | Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis |
title_sort | mycobacterium tuberculosis esx-1-secreted substrate protein espc promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis |
topic | Tuberculosis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832037/ https://www.ncbi.nlm.nih.gov/pubmed/33290182 http://dx.doi.org/10.1080/22221751.2020.1861913 |
work_keys_str_mv | AT guoqinglong mycobacteriumtuberculosisesx1secretedsubstrateproteinespcpromotesmycobacterialsurvivalthroughendoplasmicreticulumstressmediatedapoptosis AT bijing mycobacteriumtuberculosisesx1secretedsubstrateproteinespcpromotesmycobacterialsurvivalthroughendoplasmicreticulumstressmediatedapoptosis AT wanghonghai mycobacteriumtuberculosisesx1secretedsubstrateproteinespcpromotesmycobacterialsurvivalthroughendoplasmicreticulumstressmediatedapoptosis AT zhangxuelian mycobacteriumtuberculosisesx1secretedsubstrateproteinespcpromotesmycobacterialsurvivalthroughendoplasmicreticulumstressmediatedapoptosis |