Cargando…

Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway

The aim of the present study was to investigate the anti-fibrotic effects of astragaloside IV (ASV) in silicosis rats, and to further explore the potential underlying molecular mechanisms. A silica-induced rat model of pulmonary fibrosis was successfully constructed. Hematoxylin and eosin and Masson...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Nannan, Wu, Ke, Feng, Feifei, Wang, Lin, Zhou, Xiang, Wang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834968/
https://www.ncbi.nlm.nih.gov/pubmed/33448318
http://dx.doi.org/10.3892/ijmm.2021.4849
_version_ 1783642407069286400
author Li, Nannan
Wu, Ke
Feng, Feifei
Wang, Lin
Zhou, Xiang
Wang, Wei
author_facet Li, Nannan
Wu, Ke
Feng, Feifei
Wang, Lin
Zhou, Xiang
Wang, Wei
author_sort Li, Nannan
collection PubMed
description The aim of the present study was to investigate the anti-fibrotic effects of astragaloside IV (ASV) in silicosis rats, and to further explore the potential underlying molecular mechanisms. A silica-induced rat model of pulmonary fibrosis was successfully constructed. Hematoxylin and eosin and Masson's trichrome staining were performed to observe the pathological changes in lung tissues. Immunohistochemical analysis was used to assess the expression levels of Collagen I, fibronectin and α-smooth muscle actin (α-SMA). A hemocytometer and Giemsa staining were used to evaluate the cytological characteristics of the bronchoalveolar lavage fluid. ELISA was used to detect the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of genes associated with the transforming growth factor (TGF)-β1/Smad signaling pathway. ASV alleviated silica-induced pulmonary fibrosis, and reduced the expression of collagen I, fibronectin and α-SMA. In addition, the results of the present study suggested that the ASV-mediated anti-pulmonary fibrosis response may involve reduction of inflammation and oxidative stress. More importantly, ASV suppressed silica-induced lung fibroblast fibrosis via the TGF-β1/Smad signaling pathway, thereby inhibiting the progression of silicosis. In conclusion, the present study indicated that ASV may prevent silicosis-induced fibrosis by reducing the expression of Collagen I, fibronectin and α-SMA, and reducing the inflammatory response and oxidative stress, and these effects may be mediated by inhibiting the activation of the TGF-β1/Smad signaling pathway.
format Online
Article
Text
id pubmed-7834968
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-78349682021-02-05 Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway Li, Nannan Wu, Ke Feng, Feifei Wang, Lin Zhou, Xiang Wang, Wei Int J Mol Med Articles The aim of the present study was to investigate the anti-fibrotic effects of astragaloside IV (ASV) in silicosis rats, and to further explore the potential underlying molecular mechanisms. A silica-induced rat model of pulmonary fibrosis was successfully constructed. Hematoxylin and eosin and Masson's trichrome staining were performed to observe the pathological changes in lung tissues. Immunohistochemical analysis was used to assess the expression levels of Collagen I, fibronectin and α-smooth muscle actin (α-SMA). A hemocytometer and Giemsa staining were used to evaluate the cytological characteristics of the bronchoalveolar lavage fluid. ELISA was used to detect the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of genes associated with the transforming growth factor (TGF)-β1/Smad signaling pathway. ASV alleviated silica-induced pulmonary fibrosis, and reduced the expression of collagen I, fibronectin and α-SMA. In addition, the results of the present study suggested that the ASV-mediated anti-pulmonary fibrosis response may involve reduction of inflammation and oxidative stress. More importantly, ASV suppressed silica-induced lung fibroblast fibrosis via the TGF-β1/Smad signaling pathway, thereby inhibiting the progression of silicosis. In conclusion, the present study indicated that ASV may prevent silicosis-induced fibrosis by reducing the expression of Collagen I, fibronectin and α-SMA, and reducing the inflammatory response and oxidative stress, and these effects may be mediated by inhibiting the activation of the TGF-β1/Smad signaling pathway. D.A. Spandidos 2021-03 2021-01-08 /pmc/articles/PMC7834968/ /pubmed/33448318 http://dx.doi.org/10.3892/ijmm.2021.4849 Text en Copyright: © Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Li, Nannan
Wu, Ke
Feng, Feifei
Wang, Lin
Zhou, Xiang
Wang, Wei
Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway
title Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway
title_full Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway
title_fullStr Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway
title_full_unstemmed Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway
title_short Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway
title_sort astragaloside iv alleviates silica-induced pulmonary fibrosis via inactivation of the tgf-β1/smad2/3 signaling pathway
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834968/
https://www.ncbi.nlm.nih.gov/pubmed/33448318
http://dx.doi.org/10.3892/ijmm.2021.4849
work_keys_str_mv AT linannan astragalosideivalleviatessilicainducedpulmonaryfibrosisviainactivationofthetgfb1smad23signalingpathway
AT wuke astragalosideivalleviatessilicainducedpulmonaryfibrosisviainactivationofthetgfb1smad23signalingpathway
AT fengfeifei astragalosideivalleviatessilicainducedpulmonaryfibrosisviainactivationofthetgfb1smad23signalingpathway
AT wanglin astragalosideivalleviatessilicainducedpulmonaryfibrosisviainactivationofthetgfb1smad23signalingpathway
AT zhouxiang astragalosideivalleviatessilicainducedpulmonaryfibrosisviainactivationofthetgfb1smad23signalingpathway
AT wangwei astragalosideivalleviatessilicainducedpulmonaryfibrosisviainactivationofthetgfb1smad23signalingpathway