Cargando…

The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Shorrocks, Ann-Marie K., Jones, Samuel E., Tsukada, Kaima, Morrow, Carl A., Belblidia, Zoulikha, Shen, Johanna, Vendrell, Iolanda, Fischer, Roman, Kessler, Benedikt M., Blackford, Andrew N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838300/
https://www.ncbi.nlm.nih.gov/pubmed/33500419
http://dx.doi.org/10.1038/s41467-020-20818-5
_version_ 1783643143956070400
author Shorrocks, Ann-Marie K.
Jones, Samuel E.
Tsukada, Kaima
Morrow, Carl A.
Belblidia, Zoulikha
Shen, Johanna
Vendrell, Iolanda
Fischer, Roman
Kessler, Benedikt M.
Blackford, Andrew N.
author_facet Shorrocks, Ann-Marie K.
Jones, Samuel E.
Tsukada, Kaima
Morrow, Carl A.
Belblidia, Zoulikha
Shen, Johanna
Vendrell, Iolanda
Fischer, Roman
Kessler, Benedikt M.
Blackford, Andrew N.
author_sort Shorrocks, Ann-Marie K.
collection PubMed
description The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.
format Online
Article
Text
id pubmed-7838300
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78383002021-01-29 The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks Shorrocks, Ann-Marie K. Jones, Samuel E. Tsukada, Kaima Morrow, Carl A. Belblidia, Zoulikha Shen, Johanna Vendrell, Iolanda Fischer, Roman Kessler, Benedikt M. Blackford, Andrew N. Nat Commun Article The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress. Nature Publishing Group UK 2021-01-26 /pmc/articles/PMC7838300/ /pubmed/33500419 http://dx.doi.org/10.1038/s41467-020-20818-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shorrocks, Ann-Marie K.
Jones, Samuel E.
Tsukada, Kaima
Morrow, Carl A.
Belblidia, Zoulikha
Shen, Johanna
Vendrell, Iolanda
Fischer, Roman
Kessler, Benedikt M.
Blackford, Andrew N.
The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks
title The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks
title_full The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks
title_fullStr The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks
title_full_unstemmed The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks
title_short The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks
title_sort bloom syndrome complex senses rpa-coated single-stranded dna to restart stalled replication forks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838300/
https://www.ncbi.nlm.nih.gov/pubmed/33500419
http://dx.doi.org/10.1038/s41467-020-20818-5
work_keys_str_mv AT shorrocksannmariek thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT jonessamuele thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT tsukadakaima thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT morrowcarla thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT belblidiazoulikha thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT shenjohanna thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT vendrelliolanda thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT fischerroman thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT kesslerbenediktm thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT blackfordandrewn thebloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT shorrocksannmariek bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT jonessamuele bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT tsukadakaima bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT morrowcarla bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT belblidiazoulikha bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT shenjohanna bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT vendrelliolanda bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT fischerroman bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT kesslerbenediktm bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks
AT blackfordandrewn bloomsyndromecomplexsensesrpacoatedsinglestrandeddnatorestartstalledreplicationforks