Cargando…

Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses

Multi‐omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search...

Descripción completa

Detalles Bibliográficos
Autores principales: Dugourd, Aurelien, Kuppe, Christoph, Sciacovelli, Marco, Gjerga, Enio, Gabor, Attila, Emdal, Kristina B., Vieira, Vitor, Bekker‐Jensen, Dorte B., Kranz, Jennifer, Bindels, Eric.M.J., Costa, Ana S.H., Sousa, Abel, Beltrao, Pedro, Rocha, Miguel, Olsen, Jesper V., Frezza, Christian, Kramann, Rafael, Saez‐Rodriguez, Julio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838823/
https://www.ncbi.nlm.nih.gov/pubmed/33502086
http://dx.doi.org/10.15252/msb.20209730
_version_ 1783643270994198528
author Dugourd, Aurelien
Kuppe, Christoph
Sciacovelli, Marco
Gjerga, Enio
Gabor, Attila
Emdal, Kristina B.
Vieira, Vitor
Bekker‐Jensen, Dorte B.
Kranz, Jennifer
Bindels, Eric.M.J.
Costa, Ana S.H.
Sousa, Abel
Beltrao, Pedro
Rocha, Miguel
Olsen, Jesper V.
Frezza, Christian
Kramann, Rafael
Saez‐Rodriguez, Julio
author_facet Dugourd, Aurelien
Kuppe, Christoph
Sciacovelli, Marco
Gjerga, Enio
Gabor, Attila
Emdal, Kristina B.
Vieira, Vitor
Bekker‐Jensen, Dorte B.
Kranz, Jennifer
Bindels, Eric.M.J.
Costa, Ana S.H.
Sousa, Abel
Beltrao, Pedro
Rocha, Miguel
Olsen, Jesper V.
Frezza, Christian
Kramann, Rafael
Saez‐Rodriguez, Julio
author_sort Dugourd, Aurelien
collection PubMed
description Multi‐omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi‐Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network‐level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi‐omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi‐omics studies.
format Online
Article
Text
id pubmed-7838823
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78388232021-02-23 Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses Dugourd, Aurelien Kuppe, Christoph Sciacovelli, Marco Gjerga, Enio Gabor, Attila Emdal, Kristina B. Vieira, Vitor Bekker‐Jensen, Dorte B. Kranz, Jennifer Bindels, Eric.M.J. Costa, Ana S.H. Sousa, Abel Beltrao, Pedro Rocha, Miguel Olsen, Jesper V. Frezza, Christian Kramann, Rafael Saez‐Rodriguez, Julio Mol Syst Biol Methods Multi‐omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi‐Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network‐level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi‐omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi‐omics studies. John Wiley and Sons Inc. 2021-01-27 /pmc/articles/PMC7838823/ /pubmed/33502086 http://dx.doi.org/10.15252/msb.20209730 Text en © 2021 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods
Dugourd, Aurelien
Kuppe, Christoph
Sciacovelli, Marco
Gjerga, Enio
Gabor, Attila
Emdal, Kristina B.
Vieira, Vitor
Bekker‐Jensen, Dorte B.
Kranz, Jennifer
Bindels, Eric.M.J.
Costa, Ana S.H.
Sousa, Abel
Beltrao, Pedro
Rocha, Miguel
Olsen, Jesper V.
Frezza, Christian
Kramann, Rafael
Saez‐Rodriguez, Julio
Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses
title Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses
title_full Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses
title_fullStr Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses
title_full_unstemmed Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses
title_short Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses
title_sort causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses
topic Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838823/
https://www.ncbi.nlm.nih.gov/pubmed/33502086
http://dx.doi.org/10.15252/msb.20209730
work_keys_str_mv AT dugourdaurelien causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT kuppechristoph causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT sciacovellimarco causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT gjergaenio causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT gaborattila causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT emdalkristinab causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT vieiravitor causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT bekkerjensendorteb causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT kranzjennifer causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT bindelsericmj causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT costaanash causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT sousaabel causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT beltraopedro causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT rochamiguel causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT olsenjesperv causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT frezzachristian causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT kramannrafael causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses
AT saezrodriguezjulio causalintegrationofmultiomicsdatawithpriorknowledgetogeneratemechanistichypotheses