Cargando…
Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid
We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo‐ and regioselective 7β‐hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β‐position but LCA is exclu...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839452/ https://www.ncbi.nlm.nih.gov/pubmed/33085147 http://dx.doi.org/10.1002/anie.202012675 |
_version_ | 1783643383365894144 |
---|---|
author | Grobe, Sascha Badenhorst, Christoffel P. S. Bayer, Thomas Hamnevik, Emil Wu, Shuke Grathwol, Christoph W. Link, Andreas Koban, Sven Brundiek, Henrike Großjohann, Beatrice Bornscheuer, Uwe T. |
author_facet | Grobe, Sascha Badenhorst, Christoffel P. S. Bayer, Thomas Hamnevik, Emil Wu, Shuke Grathwol, Christoph W. Link, Andreas Koban, Sven Brundiek, Henrike Großjohann, Beatrice Bornscheuer, Uwe T. |
author_sort | Grobe, Sascha |
collection | PubMed |
description | We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo‐ and regioselective 7β‐hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β‐position but LCA is exclusively hydroxylated at the 6β‐position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity‐determining residues. Alanine scanning identified S240A as a UDCA‐producing variant. A synthetic “small but smart” library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio‐ and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10‐fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA. |
format | Online Article Text |
id | pubmed-7839452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78394522021-02-01 Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid Grobe, Sascha Badenhorst, Christoffel P. S. Bayer, Thomas Hamnevik, Emil Wu, Shuke Grathwol, Christoph W. Link, Andreas Koban, Sven Brundiek, Henrike Großjohann, Beatrice Bornscheuer, Uwe T. Angew Chem Int Ed Engl Communications We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo‐ and regioselective 7β‐hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β‐position but LCA is exclusively hydroxylated at the 6β‐position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity‐determining residues. Alanine scanning identified S240A as a UDCA‐producing variant. A synthetic “small but smart” library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio‐ and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10‐fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA. John Wiley and Sons Inc. 2020-11-12 2021-01-11 /pmc/articles/PMC7839452/ /pubmed/33085147 http://dx.doi.org/10.1002/anie.202012675 Text en © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Communications Grobe, Sascha Badenhorst, Christoffel P. S. Bayer, Thomas Hamnevik, Emil Wu, Shuke Grathwol, Christoph W. Link, Andreas Koban, Sven Brundiek, Henrike Großjohann, Beatrice Bornscheuer, Uwe T. Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid |
title | Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid |
title_full | Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid |
title_fullStr | Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid |
title_full_unstemmed | Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid |
title_short | Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid |
title_sort | engineering regioselectivity of a p450 monooxygenase enables the synthesis of ursodeoxycholic acid via 7β‐hydroxylation of lithocholic acid |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839452/ https://www.ncbi.nlm.nih.gov/pubmed/33085147 http://dx.doi.org/10.1002/anie.202012675 |
work_keys_str_mv | AT grobesascha engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT badenhorstchristoffelps engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT bayerthomas engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT hamnevikemil engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT wushuke engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT grathwolchristophw engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT linkandreas engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT kobansven engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT brundiekhenrike engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT großjohannbeatrice engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid AT bornscheueruwet engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid |