Cargando…

Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid

We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo‐ and regioselective 7β‐hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β‐position but LCA is exclu...

Descripción completa

Detalles Bibliográficos
Autores principales: Grobe, Sascha, Badenhorst, Christoffel P. S., Bayer, Thomas, Hamnevik, Emil, Wu, Shuke, Grathwol, Christoph W., Link, Andreas, Koban, Sven, Brundiek, Henrike, Großjohann, Beatrice, Bornscheuer, Uwe T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839452/
https://www.ncbi.nlm.nih.gov/pubmed/33085147
http://dx.doi.org/10.1002/anie.202012675
_version_ 1783643383365894144
author Grobe, Sascha
Badenhorst, Christoffel P. S.
Bayer, Thomas
Hamnevik, Emil
Wu, Shuke
Grathwol, Christoph W.
Link, Andreas
Koban, Sven
Brundiek, Henrike
Großjohann, Beatrice
Bornscheuer, Uwe T.
author_facet Grobe, Sascha
Badenhorst, Christoffel P. S.
Bayer, Thomas
Hamnevik, Emil
Wu, Shuke
Grathwol, Christoph W.
Link, Andreas
Koban, Sven
Brundiek, Henrike
Großjohann, Beatrice
Bornscheuer, Uwe T.
author_sort Grobe, Sascha
collection PubMed
description We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo‐ and regioselective 7β‐hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β‐position but LCA is exclusively hydroxylated at the 6β‐position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity‐determining residues. Alanine scanning identified S240A as a UDCA‐producing variant. A synthetic “small but smart” library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio‐ and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10‐fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA.
format Online
Article
Text
id pubmed-7839452
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78394522021-02-01 Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid Grobe, Sascha Badenhorst, Christoffel P. S. Bayer, Thomas Hamnevik, Emil Wu, Shuke Grathwol, Christoph W. Link, Andreas Koban, Sven Brundiek, Henrike Großjohann, Beatrice Bornscheuer, Uwe T. Angew Chem Int Ed Engl Communications We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo‐ and regioselective 7β‐hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β‐position but LCA is exclusively hydroxylated at the 6β‐position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity‐determining residues. Alanine scanning identified S240A as a UDCA‐producing variant. A synthetic “small but smart” library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio‐ and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10‐fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA. John Wiley and Sons Inc. 2020-11-12 2021-01-11 /pmc/articles/PMC7839452/ /pubmed/33085147 http://dx.doi.org/10.1002/anie.202012675 Text en © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Communications
Grobe, Sascha
Badenhorst, Christoffel P. S.
Bayer, Thomas
Hamnevik, Emil
Wu, Shuke
Grathwol, Christoph W.
Link, Andreas
Koban, Sven
Brundiek, Henrike
Großjohann, Beatrice
Bornscheuer, Uwe T.
Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid
title Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid
title_full Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid
title_fullStr Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid
title_full_unstemmed Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid
title_short Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β‐Hydroxylation of Lithocholic Acid
title_sort engineering regioselectivity of a p450 monooxygenase enables the synthesis of ursodeoxycholic acid via 7β‐hydroxylation of lithocholic acid
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839452/
https://www.ncbi.nlm.nih.gov/pubmed/33085147
http://dx.doi.org/10.1002/anie.202012675
work_keys_str_mv AT grobesascha engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT badenhorstchristoffelps engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT bayerthomas engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT hamnevikemil engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT wushuke engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT grathwolchristophw engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT linkandreas engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT kobansven engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT brundiekhenrike engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT großjohannbeatrice engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid
AT bornscheueruwet engineeringregioselectivityofap450monooxygenaseenablesthesynthesisofursodeoxycholicacidvia7bhydroxylationoflithocholicacid