Cargando…

A null allele of granule bound starch synthase (Wx-B1) may be one of the major genes controlling chapatti softness

Chapatti (unleavened flatbread) is a staple food in northern India and neighboring countries but the genetics behind its processing quality are poorly understood. To understand the genes determining chapatti quality, differentially expressed genes were selected from microarray data of contrasting ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Chunduri, Venkatesh, Sharma, Natasha, Garg, Monika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842929/
https://www.ncbi.nlm.nih.gov/pubmed/33508026
http://dx.doi.org/10.1371/journal.pone.0246095
Descripción
Sumario:Chapatti (unleavened flatbread) is a staple food in northern India and neighboring countries but the genetics behind its processing quality are poorly understood. To understand the genes determining chapatti quality, differentially expressed genes were selected from microarray data of contrasting chapatti cultivars. From the gene and trait association studies, a null allele of granule bound starch synthase (GBSS; Wx-B1) was found to be associated with low amylose content and good chapatti quality. For validation, near-isogenic lines (NILs) of this allele were created by marker assisted backcross (MAB) breeding. Background screening indicated 88.2 to 96.7% background recovery in 16 selected BC(3)F(5) NILs. Processing quality and sensory evaluation of selected NILs indicated improvement in chapatti making quality. Traits that showed improvement were mouthfeel, tearing strength and softness indicating that the Wx-B1 may be one of the major genes controlling chapatti softness.