Cargando…
Automated mesenchymal stem cell segmentation and machine learning-based phenotype classification using morphometric and textural analysis
Purpose: Mesenchymal stem cells (MSCs) have demonstrated clinically relevant therapeutic effects for treatment of trauma and chronic diseases. The proliferative potential, immunomodulatory characteristics, and multipotentiality of MSCs in monolayer culture is reflected by their morphological phenoty...
Autores principales: | Mota, Sakina M., Rogers, Robert E., Haskell, Andrew W., McNeill, Eoin P., Kaunas, Roland, Gregory, Carl A., Giger, Maryellen L., Maitland, Kristen C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849042/ https://www.ncbi.nlm.nih.gov/pubmed/33542945 http://dx.doi.org/10.1117/1.JMI.8.1.014503 |
Ejemplares similares
-
Role of standard and soft tissue chest radiography images in deep-learning-based early diagnosis of COVID-19
por: Hu, Qiyuan, et al.
Publicado: (2021) -
Cascaded deep transfer learning on thoracic CT in COVID-19 patients treated with steroids
por: Fuhrman, Jordan D., et al.
Publicado: (2020) -
Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation
por: Reeves, Anthony P., et al.
Publicado: (2017) -
Automated mediastinal lymph node detection from CT volumes based on intensity targeted radial structure tensor analysis
por: Oda, Hirohisa, et al.
Publicado: (2017) -
BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs
por: Amran, Dor, et al.
Publicado: (2022)