Cargando…

The prion-like domain of Fused in Sarcoma is phosphorylated by multiple kinases affecting liquid- and solid-phase transitions

Fused in Sarcoma (FUS) is a ubiquitously expressed protein that can phase-separate from nucleoplasm and cytoplasm into distinct liquid-droplet structures. It is predominantly nuclear and most of its functions are related to RNA and DNA metabolism. Excessive persistence of FUS within cytoplasmic phas...

Descripción completa

Detalles Bibliográficos
Autores principales: Owen, Izzy, Rhoads, Shannon, Yee, Debra, Wyne, Hala, Gery, Kevin, Hannula, Isabelle, Sundrum, Meenakshi, Shewmaker, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851872/
https://www.ncbi.nlm.nih.gov/pubmed/32877292
http://dx.doi.org/10.1091/mbc.E20-05-0290
Descripción
Sumario:Fused in Sarcoma (FUS) is a ubiquitously expressed protein that can phase-separate from nucleoplasm and cytoplasm into distinct liquid-droplet structures. It is predominantly nuclear and most of its functions are related to RNA and DNA metabolism. Excessive persistence of FUS within cytoplasmic phase-separated assemblies is implicated in the diseases amyotrophic lateral sclerosis and frontotemporal dementia. Phosphorylation of FUS’s prion-like domain (PrLD) by nuclear phosphatidylinositol 3-kinase-related kinase (PIKK)-family kinases following DNA damage was previously shown to alter FUS’s liquid-phase and solid-phase transitions in cell models and in vitro. However, proteomic data suggest that FUS’s PrLD is phosphorylated at numerous additional sites, and it is unknown if other non-PIKK and nonnuclear kinases might be influencing FUS’s phase transitions. Here we evaluate disease mutations and stress conditions that increase FUS accumulation into cytoplasmic phase-separated structures. We observed that cytoplasmic liquid-phase structures contain FUS phosphorylated at novel sites, which occurred independent of PIKK-family kinases. We engineered phosphomimetic substitutions within FUS’s PrLD and observed that mimicking a few phosphorylation sites strongly inhibited FUS solid-phase aggregation, while minimally altering liquid-phase condensation. These effects occurred independent of the exact location of the phosphomimetic substitutions, suggesting that modulation of PrLD phosphorylation may offer therapeutic strategies that are specific for solid-phase aggregation observed in disease.